
BALM User's Manual

Berkeley Language Equation Solving Group

Robert K. Brayton1
Jie-Hong R. Jiang1
Alan Mishchenko1

Tiziano Villa2
Nina Yevtushenko3

1University of California, Berkeley
2University of Udine, Italy

3Tomsk State University, Russia

Introduction to BALM
Finite-state automata and their languages are well-studied subjects since the early
development of computation theory. Traditional automata manipulations are based on
explicit state representation, and are limited to automata with a few thousand states. The
manipulation of automata became more practical with the advent of efficient symbolic
techniques based on binary decision diagrams (BDDs), satisfiability (SAT) solvers and
AND-INVERTER graphs (AIGs). Based on these techniques, the BALM (Berkeley
Automata and Language Manipulation) package aims at providing an experimental
environment for efficient manipulation of finite automata in various application domains,
e.g., synthesis, verification, control, etc. The environment features the most typical
automata operations, such as determinization and state minimization, as well as some
visualization capabilities, which rely on the powerful graph visualization software
[Graphviz]. The applicability of BALM to finite-state machine synthesis is demonstrated
by solving an unknown component problem formulated using language equations.

Unique features of BALM
Compared with other automata manipulation utilities, such as Grail [Grail], FSA [FSA],
etc., BALM provides a unique environment suited for language equation solving, an
important application of automata theory to component-based sequential hardware
synthesis. In addition, BALM is useful in sequential system optimization because it can
interface with the BLIF-MV or BLIF formats, which are commonly used in logic
synthesis of Boolean networks. Using BALM, it is possible to extract sequential
flexibilities in implementing a hardware finite state machine.

Computation behind BALM
In addition to traditional explicit graph enumeration algorithms for automata
manipulations, BALM provides computation algorithms based on state-of-the-art
symbolic techniques. It allows most manipulations of automata to be done implicitly.
With these the system can handle up to millions of states. However, the complementation
(determinization) of nondeterministic automata still uses explicit enumeration and hence
is limited to about at most 100K states.

Describing Designs for BALM
BALM supports two file formats, BLIF-MV (and BLIF) to describe FSMs and AUT for
describing automata. AUT is a special restricted form of BLIF-MV.

BLIF-MV
BLIF-MV is one of the input formats to BALM. It is a multi-valued extension of BLIF
(Berkeley Logic Interchange Format) to efficiently specify sequential systems in the form
of multi-level multi-valued (possibly non-deterministic) Boolean networks. Compared to
BLIF, BLIF-MV allows non-deterministic nodes1 and hence allows for modeling non-
deterministic systems. For instance, a sequential system may contain non-determinism in
its early stages of its development when some of its aspects are not completely specified.
In addition, BLIF-MV supports multi-valued variables, which often simplify
specification of the system. Although the number of values of the input and output
variables of finite-state systems in the current implementation of BALM is limited to 32,
the number of values of state variables is not limited.

The semantics of BLIF-MV is defined over flattened networks, using a
combinational/sequential concurrency model. There are three basic primitives: variables,
tables (nondeterministic nodes), and latches. A variable can take values from a finite
domain. A relation defined over a set of variables is represented using a table. A table has
only one output and any number of inputs. A particular variable can be designated as an
output in at most one table. Several tables are conceptually inter-connected if there is a
common name at the output of one table and the inputs of the other tables. Thus a named
variable is conceptually a wire. If a table is deterministic and Boolean, it may also be
thought of as a logic gate. A latch is a specialized element that can be placed on a wire. It
divides the wire into two parts; the input to the latch, and the output of the latch. A set of
initial values is associated to every latch; they must be a subset of the set of values of its
wire. A state is an assignment of values to the latches of a model, where a value assigned
to a latch must be in its domain. An initial state is a state where every latch takes a value
from its set of initial values. A latch can have more than one initial state in general.

At every time point, the system is in some state, where each latch has a value. At
every clock tick, all the latches update their values. These values then propagate through
tables until all the wires have a consistent set of values. If a latch is encountered during
the propagation, i.e., an output of a table is an input of a latch, the propagation process
through that latch is stopped. Note that because of nondeterminism, given a single state,
there may be several consistent sets of values. This semantics can be seen as a simple
extension of the standard semantics of synchronous single-clocked digital circuits. In fact,
if every table is deterministic and every latch has a single initial state, the two semantics
are exactly equal. The only differences are in the interpretation of nondeterministic tables
and latches with multiple initial states.

In BALM, the command read_blif_mv reads a BLIF-MV (or BLIF)
description, and then sets up a corresponding internal data structure to represent the
multi-valued network. The write_blif_mv command writes a BLIF-MV description
to a file. The BLIF-MV format is not meant to be read or written directly by the user,

1 These nodes generate some output from the set of pre-specified outputs.

even though simple examples in BLIF-MV may exhibit some degree of clarity. For a
more detailed treatment of the BLIF-MV format and some examples, see [BLIFMV].

AUT
In this section, we describe several restrictions on the BLIF-MV format used to represent
finite automata in BALM. This restricted language is called AUT format in this manual.
The adopted restrictions have to do with a simplified version of the BLIF-MV parser
currently implemented, and may be relaxed in the future. Note that general non-restricted
BLIF-MV can be used in BALM to represent the FSMs in the form of multi-valued
multi-level non-deterministic networks, as described in the previous section.

There are several restrictions on AUT, compared to BLIF-MV:
1) Only a non-hierarchical BLIF-MV specifications are allowed in AUT.
2) An AUT file should have exactly one latch and exactly two combinational nodes, one

describing the next-state relation and one describing the single output called "Acc".
Multi-level decompositions of the next-state node are not supported.

3) The latch's output and input variables have fixed names to be "CS" and "NS". Their
values should be defined using ".mv" directive to be equal to the number of states of
the automaton. The reset value of the latch is the initial state of the automaton.
Currently, only automata with one initial state can be used.

4) The next-state table (output is NS) should have the automaton inputs listed on the
".names/.table" line, followed by CS variable. The last variable on the line
should be "NS" variable.

5) In each cube of the next-state table, variables CS and NS can have only one specific
state value, for example, "s33" or "stateABC". Multi-valued state literals of the type
"(s33, s35, s37)" are not allowed in the next-state table. The don't-care literal "-"
cannot be used for CS and NS variables, and we cannot simplify CS variable away.
This variable should always be listed and all its values should be used in the table at
least once, including the ".default" line. However, note that there are no such
restrictions on how the multi-valued inputs of the automaton are specified in the table.
Any literals of these variables, including the don't-care literal, can be used in the next-
state table.

6) The BLIF-MV specification should have exactly one binary primary output. Its name
is fixed to be "Acc" and is defined using the second combinational node of the
BLIF-MV file. It has only one input, CS. The purpose of this node is to specify which
of the automaton states are accepting. Thus Acc = 1 if and only if CS has a value
equal to one of the accepting states.

7) The default line of the Acc table can be in one of the following forms:
Case 1: all states are accepting

.table -> Acc
1

Case 2: only one state is accepting
.table CS -> Acc
.default 0
<acc_state> 1

Case 3: only one state is non-accepting
.table CS -> Acc
.default 1
<non_acc_state> 0

Case 4: several accepting states
.table CS -> Acc
.default 0
(comma-separated list of accepting states in parentheses) 1
or
.table CS -> Acc
.default 1
(comma-separated list of non-accepting states in parentheses) 0

Below is an example of a simple 3-state automaton with accepting state "DC"

representing using AUT format:

===============================
.model spec
.inputs i o
.outputs Acc

.mv CS, NS 3 a b DC
.mv i 3

.latch NS CS
.reset CS
a

.table CS ->Acc
.default 0
DC 1

.table i o CS ->NS
.default DC
(1,2) 1 a a
- 0 a b
0 1 b a

.end
===============================

In BALM, the same command read_blif_mv can read in an AUT file because

AUT is a subset of BLIF-MV. In this case, the input is interpreted as a multi-value
network and not as an automaton (the number of states in this case should not exceed 32).
There is no separate command to read in an automaton as an automaton. The automata
manipulation commands always take the input automata file name(s) on the command

line and write the resulting automaton into an output file name specified on the command
line. This is the reason BALM does not have a separate command to write out an
automaton.

Working flow of BALM
BALM supports two different flows.

1. The first deals with FSMs where the fixed part F and specification S are given as
FSMs. This flow is oriented towards solving for the unknown component X where

SXF ⊆⋅ and takes advantage of the special features of F, S, and X to provide a
very efficient solution. The flow is embodied in the command solve_fsm_equ.

2. The second flow deals directly with automata by reading in, manipulating and
writing out automata in a file format AUT. In addition, an automaton can be
extracted from a Boolean network in the BLIF-MV file format using the
command extract_aut.

Automata, Languages and Their Manipulations
An automaton A is a five-tuple (Q, Σ, δ, q0, F), where Q is a finite set of states, Σ is a
finite alphabet, δ: Q × Σ → 2Q is the transition function (where 2Q denotes the power
set of Q), q0 ∈ Q is the start state, and F ⊆ Q is the set of accepting states. A state is of
deterministic transition if, under any input assignment, there is exactly one destination
state. Otherwise, the state is nondeterministic. Moreover, a finite automaton is
deterministic if all of its states are of deterministic transitions. Otherwise, it is
nondeterministic.

An input string σv = (σ1, …, σn) with σi ∈ Σ, (or input sequence) is accepted by an
automaton A if the set of destination states from q0 under σv with respect to δ, denoted as
δ(q0, σv), has nonempty intersection with F. The set of all strings accepted by an
automaton A forms the language or behavior of A, denoted as L(A). (Languages of finite
automata are known as regular languages, and can be described using regular
expressions). In general, manipulations over languages can be accomplished in terms of
manipulations over finite automata, and vice versa.

General manipulations
Given two finite automata A1 = (Q1, Σ, δ1, q1

0, F1) and A2 = (Q2, Σ, δ2, q2
0, F2), their

product automaton describes their synchronized joint behavior under some input
sequence. The product automaton A1⋅A2 = (Q, Σ, δ, q0, F) of A1 and A2 can be constructed
by defining

1. Q = Q1 × Q2,
2. δ((q1, q2), σ) = (δ1(q1, σ) for (q1, q2) ∈ Q1 × Q2 and σ ∈ Σ,
3. q0 = (q1

0, q2
0), and

4. (q1, q2) ∈ F if q1 ∈ F1 or q2 ∈ F2.
In BALM, a product automaton can be constructed using the command product.

It is a well-known fact that nondeterminism does not increase the expression power of
finite automata. In fact, for any nondeterministic automaton A = (Q, Σ, δ, q0, F), there
always exists an equivalent deterministic one. To derive such an equivalent deterministic
automaton A′ = (Q′, Σ, δ′, q0′, F′) from A, one may apply the so-called subset
construction as follows. Let

1. Q′ = 2Q ,
2. δ′(q′, σ) = {q ∈ Q | q ∈ δ(p, σ) for some p ∈ q′} for q′ ∈ Q′ and σ ∈ Σ,
3. q0′ = { q0}, and
4. F′ = {q′ ∈ Q′ | q′ ∩ F ≠ ∅}.

In BALM, command check_nd checks if an automaton is deterministic. A
nondeterministic automaton can be determinized using command determinize.

Determinizing a nondeterministic automaton is a step usually performed before
complementation since complementing a deterministic automaton A = (Q, Σ, δ, q0, F) can
be easily achieved by inverting the acceptance condition of states. That is, the
complement of A is A = (Q, Σ, δ, q0, Q\F). In BALM, an automaton A can be

complemented using command complement where a determinization is automatically
performed if A is nondeterministic.

A state is incomplete if there is some input assignment, under which the next state
transition is undefined (i.e., there is no next state under that input assignment). An
automaton is said to be incomplete if it has at least one incomplete state. An incomplete
automaton can be completed by adding a single non-accepting don’t care state with a
self-loop transition under any input assignment (a sink state), and directing all missing
transitions from any state to this don’t care state. Note that the automata before and after
completion accept the same language. In BALM, an incomplete automaton can be
completed using command complete. By default, this command adds a non-accepting
don’t-care state. In some applications, it is necessary to add an accepting don’t-care state,
which is done using command complete –a.

Specialized manipulations
An automaton A is prefix closed (so is its corresponding language) if any prefix of an
accepting string in L(A) is also in L(A). A deterministic automaton can be trimmed to be
prefix-closed by collapsing all non-accepting states into a single non-accepting “sink”
state (no transition from this state to other accepting states) with a universal self-loop
transition. BALM provides command prefix to trim an automaton to be prefix closed.

A state of an automaton is progressive with respect to a set of variables U, called U-
progressive, if at least one of its next states under any valuation of U is accepting. An
automaton is progressive with respect to U, if all of its states are U-progressive. An
automaton can be trimmed to be progressive with respect to U by iteratively deleting
states that are not U-progressive. BALM can trim an automaton to be progressive by
command progressive. The number of inputs that are to be considered in U needs to
be specified on the input line, e.g. progressive –i 5.

A finite state machine (an FSM) is a six-tuple (Q, I, Σ, Ω, δ, λ), where Q is a finite set of
states, I ⊆ Q is the set of initial states, Σ and Ω are the sets of input and output alphabets,
respectively, and δ: Σ × Q → Q (resp. λ: Σ × Q → Ω) is the transition function (resp. the
output function). Hence, an FSM (when converted to an automaton by combining inputs
and outputs) differs from a typical automaton in that all states are accepting, input and
output alphabets are differentiated. In addition, an FSM is prefix closed and input
progressive. Given an automaton A with the specification of input and output variables,
BALM is capable of trimming A to be an FSM. Moreover, BALM can further constrain
the synthesized FSM to be of Moore type, that is, λ: Q → Ω is independent of input Σ.

In composing two FSMs, it is sometimes necessary to rearrange (rename, reorder, create,
or hide) input and output signals. BALM supports these rearrangements by command
support. However, some of this is done automatically when for some of the commands.
For example, product A1 A2 A3 will automatically change the support of A1 and
A2 to be the least common support and then create the product A3 with that support.

Optimization
In BALM, a deterministic finite automaton can be state-minimized using command
minimize based on Myhill-Nerode theorem. In addition to the above exact
minimization, BALM provides a heuristic algorithm (command dcmin) for state
minimization of a nondeterministic finite automaton, whose behavior, as a side effect,
may be reduced thereafter, i.e. some of the nondeterminism may be used up in obtaining
the result. A discussion of the use of dcmin can be found in the applications section of
this manual.

Verification
Many verification problems in state-transition systems can be reduced to the checking of
language containment, which tests if the language of one automaton is contained
another. The checking can be accomplished by product and complement operations. In
BALM, language containment checking is performed using command contain which
will report if the two automata specified in the command line are related by language
containment (or are equivalent), and optionally give counter-examples to non-
containment.

Applications

Synthesis of Unknown Components
An important step in the design of complex systems is the decomposition of a system into
a number of separate components, which interact in a well-defined way. Component-
based design methodology plays an important role in facilitating design reuse. Design
reuse is an essential technique in improving productivity for complex designs. A typical
question is how to design an unknown component X that, when combined (in a way as
shown in Figure 1) with a known (fixed) component F, satisfies specification S of the
overall system, denoted as SXF ⊆⋅ .

In [YVB+01], the solution to the above unknown component problem is
formulated in language equations. In essence, the most general solution to the unknown
problem can be written as the language equation SFSF vuouvi •≡⋅ ⇓⇑ ,,,,))((, where the

overlines denote complementations, the upward ⇑ and downward ⇓ arrows denote
support lifting and lowering, respectively, to the specified variables.

X

Fi o

uv

Figure 1. The composition topology of a known component F and an unknown

component X.

As an application, we show that BALM can be used to derive the most general FSM
solution to the unknown component problem by the algorithm in Figure 2, where each
operation corresponds to some command in BALM.

Algorithm: LanguageEquationSolving
Input: prefix closed S(i,o) and F(i,v,u,o)
Output: most general prefix closed solution X
begin
01 X := Complete(S)
02 X := Determinize(X)
03 X := Complement(X)
04 X := Support(X,(i,v,u,o))
05 X := Product(Complete(F),X)
06 X := Support(X,(u,v))
07 X := Determinize(X)
08 X := Complete(X)
09 X := Complement(X)
10 X := PrefixClose(X)

11 X := Progressive(X)
12 return X
end

Figure 2. Algorithm for computing the most general prefix-closed progressive solution.

In terms of the commands of BALM, this is illustrated assuming that the specification
automaton is S.aut and the fixed automaton is initially given in the BLIF-MV file F.mv
as a finite state machine.

balm> read_blif_mv F.mv
balm> extract_aut F.aut

balm> complement S.aut Sc.aut
balm> product F.aut Sc.aut P.aut
balm> support u(4),v(8) P.aut Ps.aut
balm> complement Ps.aut Pc.aut
balm> prefix Pc.aut Pp.aut
balm> progressive –i 1 Pp.aut X.aut

Here we have assumed that the u and v variables are single multi-valued variables with 4
and 8 values in their domains respectively. Note that in the support command, u was
listed first, since in progressive, the input to the unknown component must come
first.

Minimization of the most general solution. Command dcmin in BALM implements a
minimization procedure DCMIN that works particularly well when the state of the fixed
component F is communicated (through signals u) to the unknown component X. When
the algorithm of language equation solving is done, there are a lot of input minterms u
that do not exist (are unspecified) at a particular state of X since the state inputs from F
usually have to agree with the internal state of X. This causes, during the solution process,
many transitions to an accepting “don’t care” state, usually named DC1. A don’t care
state is a sink and can be made equivalent to any other state (if it is accepting) by using
its don’t cares (see Figure 3).

Figure 3. The composition topology of a known component F and an unknown

component X.

nnoonn--aacccceeppttiinngg
ddoonn’’tt ccaarree

aacccceeppttiinngg
ddoonn’’tt ccaarree ((DDCC11))

Thus, any transition to DC1 can be made to go to any state. We can use this property to
make states equivalent to each other. A sufficient condition for this is that the set of
transitions which are care transitions (i.e. go to some accepting state other than DC1) do
not intersect. Thus if 1 2 3, ,p p p are the care transition predicates from states 1 2 3, ,s s s
respectively, where 1 2 3p p p∧ ∧ =∅ , then 1 2 3, ,s s s can be made equivalent by using
the don’t cares to extend the care transitions of each state to 1 2 3p p p+ + . This then
makes all three of the states equivalent.

DCMIN works by building an incompatibility graph among the states. There is an
edge 1 2s s→ if and only if 1 2p p∧ ≠∅ . The choice, of which states to merge together
into a single representative equivalent state, is made by finding a minimum coloring of
the incompatibility graph.

The more state information communicated by F to X, the better DCMIN works.
However, note that this is just one way of using the flexibility provided by the don’t cares
in the solution X and certainly may not be the best way. On the other hand, DCMIN is
very fast and in practice seems to be quite effective. Other good methods of state
minimization are either unknown or are very computationally intensive.

One way to understand why DCMIN works is the following. When the product
machine is created during the solution phase to determine X, each state is a pair, one state
from F and one state from the specification S. Although this product automaton is
determinized and complemented to get X, the genesis of X starts out with an image of the
states of the product. In general, we do not need to make this correspondence between
states, and communicating the internal states of F does not make any difference here in X.
However, when we use DCMIN, this information (correspondence between states) is
used, hopefully to an advantage. We will provide an illustration of the use of DCMIN in
the next application.

Synthesis of Winning Strategies for Combinatorial Games
Finding winning strategies of some combinatorial games, such as the NIM game, tic-tae-
toe, the wolf-goat-cabbage puzzle, etc., can be formulated as solving the unknown
component problem. Therefore, BALM can be used to synthesize winning strategies of
these combinatorial games. There are several examples of these formulations in the
accompanying directory of examples that is provided with BALM.

Computing Sequential Flexibilities
We illustrate this with an example where we start with a given FSM, S. We then divide it
into two parts, calling the first part F and the second part A. We will then compute the
maximum sequential flexibility for A. In command latch_split of BALM, we
require that the language of the FSM XF ⋅ is contained in the language of the FSM S
where F is a part of S containing a subset of its latches. We will use a running example,
planet.blif, to illustrate this application. In S (which is planet.blif), the latches
are (v7,v8,v9,v10,v11,v12). Using the command, latch_split 0-3, the

first four latches are removed leaving the latches of F as (v11,v12). When we
compute the product of SF ⋅ in solving for the solution of SXF ⊆⋅ , the state space
variables of the product corresponds to

(v11,v12,v7,v8,v9,v10,v11,v12).
In general, values in the first, (v11,v12), need not agree with those in the last,
(v11,v12). However, suppose we force them to agree. This sets up a simulation
relation between the states of XF ⋅ and S, namely a state of XF ⋅ , say (0,0,sx) is
related to a state of S,

sx =(-,-,-,-,0,0),
i.e. the values of (v11,v12) in F are forced to take the same values as (r4,r5,r6)
in S. All other product states are not allowed. For example, a product state
(0,0,1,1,0,1,0,1) can’t exist because of this forced correspondence since the two
copies of (v11,v12) disagree.

One way to effect this is to
1) expose the latches in S that correspond to the latches of F, i.e. make these latches

primary outputs of S, and
2) make all the latches of F primary outputs of F.

In the computation for the solution X, the primary outputs of F and S are always forced to
have the same values since they have the same name. These two steps can be done by a
simple manual procedure. BALM has the command latch_expose which makes all
latches in a file, primary outputs, in addition to the normal ones. For Step 1) this can be
applied to F. Unfortunately, in Step 2) applying latch_expose to S exposes too many
latches of S and we have to eliminate some. We give an example to illustrate the
procedure to be used. In the example, planet.blif is S. The six latches of
planet.blif are (v6, …,v11).

read_blif_mv planet.blif
latch_split 0-3
latch_expose
write_blif_mv planet.mv

read_blif_mv planetf.blif
latch_expose
write_blif_mv planetf.blif

The command latch_split creates files planetf.blif, planeta.blif, and
planets.script. These files reflect that all the latches of planet were made primary
outputs. The fourth command writes the “exposed” planet network into a new file which
we name planet.mv. The last three commands expose the latches of F as required by
Step 2). Unfortunately, in file planet.mv, all the latches of S are exposed and not just
the ones that remain in F, i.e. latches v11 and v12. Now we have to edit two files that
were made by this procedure to remove the excess primary outputs of S and reflect that S
is not called planet.mv.

Now we look at planet.mv (which corresponds to S) and remove the outputs
corresponding to the first four latches, v7,v8,v9,v10:

.inputs v0 v1 v2 v3 v4 v5 v6
.outputs v13.6 v13.7 v13.8 v13.9 v13.10 v13.11 v13.12 \
v13.13 v13.14 v13.15 v13.16 v13.17 v13.18 v13.19 v13.20 \
v13.21 v13.22 v13.23 v13.24 v7 v8 v9 v10 v11 v12

becomes

.inputs v0 v1 v2 v3 v4 v5 v6

.outputs v13.6 v13.7 v13.8 v13.9 v13.10 v13.11 v13.12 \
v13.13 v13.14 v13.15 v13.16 v13.17 v13.18 v13.19 v13.20 \
v13.21 v13.22 v13.23 v13.24 v11 v12

Finally, we edit planets.script and replace the second input file with planet.mv
instead of planet.blif, since this is the new specification S:

solve_fsm_equ planetf.blif planet.blif \
v0,v1,v2,v3,v4,v5,v6,v11,v12 v7,v8,v9,v10 planetxs.aut

We now look at the inputs and outputs of S, F, and X

planet.mv:
Primary inputs: v0 v1 v2 v3 v4 v5 v6
Primary outputs: {v11} {v12} {v13.10} {v13.11} {v13.12} {v13.13}
{v13.14} {v13.15} {v13.16} {v13.17} {v13.18} {v13.19}
{v13.20} {v13.21} {v13.22} {v13.23} {v13.24} {v13.6} {v13.7}
{v13.8} {v13.9}

planetf.blif:
Primary inputs: v10 v7 v8 v9 v0 v1 v2 v3 v4 v5 v6
Primary outputs: {v11} {v12} {v13.10} {v13.11} {v13.12} {v13.13}
{v13.14} {v13.15} {v13.16} {v13.17} {v13.18} {v13.19}
{v13.20} {v13.21} {v13.22} {v13.23} {v13.24} {v13.6} {v13.7}
{v13.8} {v13.9}

planetxs.aut:
Primary inputs: v0,v1,v2,v3,v4,v5,v6,v11,v12,v7,v8,v9,v10
Primary outputs: Acc

Note that F has extra inputs that come from X, v7,v8,v9,v10 (the v variables) and X
has extra inputs that come from the latches of F, v11,v12, (the u varuables).

We are now set to take advantage of the simulation relation. We execute

source planetS.script
dcmin planetxs.aut planetxs-dcmin.aut

We need to use dcmin to minimize the result planetxs.aut:

dcmin planetxs.aut planetxs-dcmin.aut

The reason this will work well is that inputs to the solution automaton planetxs.aut
must agree with the product state in the variables v11,v12. For example if the product
state had 0 1 in these positions, then any input with v11 = 1 or v12 = 0 would be an
input that would never occur, and its transition would be directed to the accepting don’t
care state. Hence, it can be used by dcmin in minimizing the result. Looking at the
relative sizes we see

print_stats_aut planetxs.aut
"csf": incomplete (48 st), deterministic, non-progressive
(48 st), and non-Moore (48 st).
13 inputs (13 FSM inputs) 49 states (49 accepting) 120
trans
Inputs = { v0,v1,v2,v3,v4,v5,v6,v11,v12,v7,v8,v9,v10 }

and

print_stats_aut planetxs-dcmin.aut
"csf": complete, deterministic, progressive, and Moore.
13 inputs (13 FSM inputs) 13 states (12 accepting) 61
trans
Inputs = { v0,v1,v2,v3,v4,v5,v6,v11,v12,v7,v8,v9,v10 }

We note that it is possible to do the following procedure (without editing any files):

read_blif_mv planet.blif
latch_expose
latch_split 0-3
source planetS.script
dcmin planetxs.aut planet-dcmin.aut

but this would force the outputs of X to be aligned with the states of S and would overly
constrain the solution. If this is tried on the example, the final solution planet-
dcmin.aut would have 3 more states than with the edited version. Also, in checking
the particular solution planeta.blif, we note that it has 16 states all of which are
deterministic, and can’t be state minimized, whereas planetxs-dcmin has 12 states
all of which are non-deterministic (probably ND only in the outputs).

Appendix

Commands in BALM

The following list contains a one line summary of all the commands available in BALM.

Automata manipulation commands:

• complement: complement an automaton (a non-deterministic automaton will be
automatically determinized first)

• complete: complete an automaton by adding a don't-care state
• contain: check language containment of two automata
• dcmin: minimize the number of states by collapsing states whose transitions into

care states are compatible
• determinize: determinize an automaton
• minimize: minimize the number of states of an automaton
• moore: trim an automaton to contain Moore states only
• prefix: leave only accepting states that are reachable from initial states
• product: build the product of two automata
• progressive: leave only accepting and complete states that are reachable from

initial states
• support: change the input variables of an automaton

Automata viewing commands:

• plot_aut: visualize an automaton using DOT and GSVIEW
• print_lang_size: compute the number of I/O strings accepted by the

maximum prefix-closed sub-automaton of an automaton
• print_nd_states: print information about non-deterministic states of an

automaton
• print_stats_aut: print statistics about an automaton
• print_support: print the list of support variables of an automaton

I/O commands:

• read_blif: read the current network from the BLIF file
• read_blif_mv: read the current network from the BLIF-MV file
• write_blif: write the current network in the BLIF format
• write_blif_mv: write the current network in the BLIF-MV format

Miscellaneous commands:

• alias: provide an alias for a command
• echo: echo the arguments
• help: print the list of available commands by group
• history: a UNIX-like history mechanism inside the BALM shell

• ls: print the file names in the current directory
• quit: exit BALM
• source: execute commands from a file
• time: provide a simple elapsed time value
• unalias: removes the definition of an alias

MV network commands:

• extract_aut: extract the state-transition graph from the current network as an
automaton

• latch_expose: make latch outputs visible as POs of the current network
• latch_split: split the current network into two networks by dividing latches

and the related combinational logic; generates synthesis and verification scripts
assuming that one part is fixed and another part is unknown

• solve_fsm_equ: solve language equation F X S⊆�

Network viewing commands:

• print: print multi-valued sum-of-products representation of nodes
• print_factor: print algebraic factored form of nodes
• print_io: print fanins/fanouts of nodes
• print_latch: print the list of latches of the current network
• print_level: print nodes in the current network by level
• print_nd: print the list of non-deterministic nodes in the current network
• print_range: print the numbers of values of nodes
• print_stats: print network statistics and report the percentage of nodes

having each representation

Bibliography
[BLIFMV] BLIF-MV manual.
http://www-cad.eecs.berkeley.edu/~vis/usrDoc.html

[FSA] FSA6.2XX: Finite State Automata Utilities.
http://odur.let.rug.nl/~vannoord/Fsa

 [Grail] The Grail+ Project.
http://www.csd.uwo.ca/research/grail

[Graphviz] Graphviz - Graph Visualization Software.
http://www.graphviz.org/

[MiB03] A. Mishchenko and R. K. Brayton. A theory of nondeterministic networks. In
Proc. Int'l Conf. on Computer-Aided Design, 2003.

 [MBJ+05] A. Mishchenko et al. Efficient solution of language equations using
partitioned representations. In Proc. Design Automation and Test in Europe, March 2005.

 [Sip97] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Co.,1997.

 [YVB+01] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, and A. Sangiovanni-
Vincentelli. Solution of parallel language equations for logic synthesis. In Proc. Int'l
Conf. on Computer-Aided Design, pages 103--110, 2001.

 [YVB+03] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, and A. Sangiovanni-
Vincentelli. Compositionally progressive solutions of synchronous language equations. In
Proc. Int'l Workshop on Logic and Synthesis, pages 148--155, 2003.

 [YVB+05] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, and A. Sangiovanni-
Vincentelli. Sequential synthesis by language equation solving. Submitted to IEEE
Transaction on Computer-Aided Design, 2005.

