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Introduction to BALM 
Finite-state automata and their languages are well-studied subjects since the early 
development of computation theory. Traditional automata manipulations are based on 
explicit state representation, and are limited to automata with a few thousand states. The 
manipulation of automata became more practical with the advent of efficient symbolic 
techniques based on binary decision diagrams (BDDs), satisfiability (SAT) solvers and 
AND-INVERTER graphs (AIGs). Based on these techniques, the BALM (Berkeley 
Automata and Language Manipulation) package aims at providing an experimental 
environment for efficient manipulation of finite automata in various application domains,  
e.g., synthesis, verification, control, etc. The environment features the most typical 
automata operations, such as determinization and state minimization, as well as some 
visualization capabilities, which rely on the powerful graph visualization software 
[Graphviz]. The applicability of BALM to finite-state machine synthesis is demonstrated 
by solving an unknown component problem formulated using language equations. 

Unique features of BALM 
Compared with other automata manipulation utilities, such as Grail [Grail], FSA [FSA], 
etc., BALM provides a unique environment suited for language equation solving, an 
important application of automata theory to component-based sequential hardware 
synthesis. In addition, BALM is useful in sequential system optimization because it can 
interface with the BLIF-MV or BLIF formats, which are commonly used in logic 
synthesis of Boolean networks. Using BALM, it is possible to extract sequential 
flexibilities in implementing a hardware finite state machine. 
 



Computation behind BALM 
In addition to traditional explicit graph enumeration algorithms for automata 
manipulations, BALM provides computation algorithms based on state-of-the-art 
symbolic techniques. It allows most manipulations of automata to be done implicitly. 
With these the system can handle up to millions of states. However, the complementation 
(determinization) of nondeterministic automata still uses explicit enumeration and hence 
is limited to about at most 100K states.  
 
 



Describing Designs for BALM 
BALM supports two file formats, BLIF-MV (and BLIF) to describe FSMs and AUT for 
describing automata. AUT is a special restricted form of BLIF-MV. 

BLIF-MV 
BLIF-MV is one of the input formats to BALM. It is a multi-valued extension of BLIF 
(Berkeley Logic Interchange Format) to efficiently specify sequential systems in the form 
of multi-level multi-valued (possibly non-deterministic) Boolean networks. Compared to 
BLIF, BLIF-MV allows non-deterministic nodes1 and hence allows for modeling non-
deterministic systems. For instance, a sequential system may contain non-determinism in 
its early stages of its development when some of its aspects are not completely specified. 
In addition, BLIF-MV supports multi-valued variables, which often simplify 
specification of the system. Although the number of values of the input and output 
variables of finite-state systems in the current implementation of BALM is limited to 32, 
the number of values of state variables is not limited. 

The semantics of BLIF-MV is defined over flattened networks, using a 
combinational/sequential concurrency model. There are three basic primitives: variables, 
tables (nondeterministic nodes), and latches. A variable can take values from a finite 
domain. A relation defined over a set of variables is represented using a table. A table has 
only one output and any number of inputs. A particular variable can be designated as an 
output in at most one table. Several tables are conceptually inter-connected if there is a 
common name at the output of one table and the inputs of the other tables. Thus a named 
variable is conceptually a wire. If a table is deterministic and Boolean, it may also be 
thought of as a logic gate. A latch is a specialized element that can be placed on a wire. It 
divides the wire into two parts; the input to the latch, and the output of the latch. A set of 
initial values is associated to every latch; they must be a subset of the set of values of its 
wire. A state is an assignment of values to the latches of a model, where a value assigned 
to a latch must be in its domain. An initial state is a state where every latch takes a value 
from its set of initial values. A latch can have more than one initial state in general. 

At every time point, the system is in some state, where each latch has a value. At 
every clock tick, all the latches update their values.  These values then propagate through 
tables until all the wires have a consistent set of values.  If a latch is encountered during 
the propagation, i.e., an output of a table is an input of a latch, the propagation process 
through that latch is stopped. Note that because of nondeterminism, given a single state, 
there may be several consistent sets of values. This semantics can be seen as a simple 
extension of the standard semantics of synchronous single-clocked digital circuits. In fact, 
if every table is deterministic and every latch has a single initial state, the two semantics 
are exactly equal. The only differences are in the interpretation of nondeterministic tables 
and latches with multiple initial states. 

In BALM, the command read_blif_mv reads a BLIF-MV (or BLIF) 
description, and then sets up a corresponding internal data structure to represent the 
multi-valued network. The write_blif_mv command writes a BLIF-MV description 
to a file. The BLIF-MV format is not meant to be read or written directly by the user, 
                                                 
1 These nodes generate some output from the set of pre-specified outputs. 



even though simple examples in BLIF-MV may exhibit some degree of clarity. For a 
more detailed treatment of the BLIF-MV format and some examples, see [BLIFMV]. 

AUT 
In this section, we describe several restrictions on the BLIF-MV format used to represent 
finite automata in BALM. This restricted language is called AUT format in this manual. 
The adopted restrictions have to do with a simplified version of the BLIF-MV parser 
currently implemented, and may be relaxed in the future. Note that general non-restricted 
BLIF-MV can be used in BALM to represent the FSMs in the form of multi-valued 
multi-level non-deterministic networks, as described in the previous section. 
 

There are several restrictions on AUT, compared to BLIF-MV: 
1) Only a non-hierarchical BLIF-MV specifications are allowed in AUT. 
2) An AUT file should have exactly one latch and exactly two combinational nodes, one 

describing the next-state relation and one describing the single output called "Acc". 
Multi-level decompositions of the next-state node are not supported. 

3) The latch's output and input variables have fixed names to be "CS" and "NS". Their 
values should be defined using ".mv" directive to be equal to the number of states of 
the automaton. The reset value of the latch is the initial state of the automaton. 
Currently, only automata with one initial state can be used. 

4) The next-state table (output is NS) should have the automaton inputs listed on the 
".names/.table" line, followed by CS variable. The last variable on the line 
should be "NS" variable. 

5) In each cube of the next-state table, variables CS and NS can have only one specific 
state value, for example, "s33" or "stateABC". Multi-valued state literals of the type 
"(s33, s35, s37)" are not allowed in the next-state table. The don't-care literal "-" 
cannot be used for CS and NS variables, and we cannot simplify CS variable away. 
This variable should always be listed and all its values should be used in the table at 
least once, including the ".default" line. However, note that there are no such 
restrictions on how the multi-valued inputs of the automaton are specified in the table. 
Any literals of these variables, including the don't-care literal, can be used in the next-
state table. 

6) The BLIF-MV specification should have exactly one binary primary output. Its  name 
is fixed to be "Acc" and is defined using the second combinational node of the 
BLIF-MV file. It has only one input, CS. The purpose of this node is to specify which 
of the automaton states are accepting. Thus Acc = 1 if and only if CS has a value 
equal to one of the accepting states. 

7) The default line of the Acc table can be in one of the following forms: 
Case 1: all states are accepting 

.table -> Acc 
1 

Case 2: only one state is accepting 
.table CS -> Acc 
.default 0 
<acc_state> 1 



Case 3: only one state is non-accepting 
.table CS -> Acc 
.default 1 
<non_acc_state> 0 

Case 4: several accepting states 
.table CS -> Acc 
.default 0 
(comma-separated list of accepting states in parentheses) 1 
or 
.table CS -> Acc 
.default 1 
(comma-separated list of non-accepting states in parentheses) 0 

 
Below is an example of a simple 3-state automaton with accepting state "DC" 

representing using AUT format: 
 

=============================== 
.model spec 
.inputs i o 
.outputs Acc 
 
.mv CS, NS  3  a b DC 
.mv i 3 
 
.latch NS CS 
.reset CS 
a 
 
.table CS ->Acc 
.default 0 
DC 1 
 
.table i o CS ->NS 
.default DC 
(1,2)  1   a   a 
-      0   a   b 
0      1   b   a 
 
.end 
=============================== 

 
In BALM, the same command read_blif_mv can read in an AUT file because 

AUT is a subset of BLIF-MV. In this case, the input is interpreted as a multi-value 
network and not as an automaton (the number of states in this case should not exceed 32). 
There is no separate command to read in an automaton as an automaton. The automata 
manipulation commands always take the input automata file name(s) on the command 



line and write the resulting automaton into an output file name specified on the command 
line. This is the reason BALM does not have a separate command to write out an 
automaton. 

Working flow of BALM 
BALM supports two different flows.  

1. The first deals with FSMs where the fixed part F and specification S are given as 
FSMs. This flow is oriented towards solving for the unknown component X where 

SXF ⊆⋅  and takes advantage of the special features of F, S, and X to provide a 
very efficient solution. The flow is embodied in the command solve_fsm_equ.  

2. The second flow deals directly with automata by reading in, manipulating and 
writing out automata in a file format AUT. In addition, an automaton can be 
extracted from a Boolean network in the BLIF-MV file format using the 
command extract_aut. 

 



Automata, Languages and Their Manipulations 
An automaton A is a five-tuple (Q, Σ, δ, q0, F), where Q is a finite set of states, Σ is a 
finite alphabet, δ: Q × Σ → 2Q  is the transition function (where 2Q  denotes the power 
set of Q), q0 ∈ Q is the start state, and F ⊆ Q is the set of accepting states. A state is of 
deterministic transition if, under any input assignment, there is exactly one destination 
state. Otherwise, the state is nondeterministic. Moreover, a finite automaton is 
deterministic if all of its states are of deterministic transitions. Otherwise, it is 
nondeterministic. 
 
An input string σv  = (σ1, …, σn) with σi ∈ Σ, (or input sequence) is accepted by an 
automaton A if the set of destination states from q0 under σv  with respect to δ, denoted as 
δ(q0, σv ), has nonempty intersection with F. The set of all strings accepted by an 
automaton A forms the language or behavior of A, denoted as L(A). (Languages of finite 
automata are known as regular languages, and can be described using regular 
expressions). In general, manipulations over languages can be accomplished in terms of 
manipulations over finite automata, and vice versa. 

General manipulations 
Given two finite automata A1 = (Q1, Σ, δ1, q1

0, F1) and A2 = (Q2, Σ, δ2, q2
0, F2),  their 

product automaton describes their synchronized joint behavior under some input 
sequence. The product automaton A1⋅A2 = (Q, Σ, δ, q0, F) of A1 and A2 can be constructed 
by defining  

1. Q = Q1 × Q2,  
2. δ((q1, q2), σ)  = (δ1(q1, σ) for (q1, q2) ∈ Q1 × Q2 and σ ∈ Σ,  
3. q0 = (q1

0, q2
0), and  

4.  (q1, q2) ∈ F if q1 ∈ F1 or q2 ∈ F2.  
In BALM, a product automaton can be constructed using the command product. 
 
It is a well-known fact that nondeterminism does not increase the expression power of 
finite automata. In fact, for any nondeterministic automaton A = (Q, Σ, δ, q0, F), there 
always exists an equivalent deterministic one. To derive such an equivalent deterministic 
automaton A′ = (Q′, Σ, δ′, q0′, F′) from A, one may apply the so-called subset 
construction as follows. Let  

1. Q′ = 2Q ,  
2. δ′(q′, σ) = {q ∈ Q | q ∈ δ(p, σ) for some p ∈ q′} for q′ ∈ Q′ and σ ∈ Σ,  
3. q0′ = { q0}, and 
4. F′ = {q′ ∈ Q′ | q′ ∩ F ≠ ∅}.  

In BALM, command check_nd checks if an automaton is deterministic. A 
nondeterministic automaton can be determinized using command determinize. 
 
Determinizing a nondeterministic automaton is a step usually performed before 
complementation since complementing a deterministic automaton A = (Q, Σ, δ, q0, F) can 
be easily achieved by inverting the acceptance condition of states. That is, the 
complement of A is A  = (Q, Σ, δ, q0, Q\F). In BALM, an automaton A can be 



complemented using command complement where a determinization is automatically 
performed if A is nondeterministic. 
 
A state is incomplete if there is some input assignment, under which the next state 
transition is undefined (i.e., there is no next state under that input assignment). An 
automaton is said to be incomplete if it has at least one incomplete state. An incomplete 
automaton can be completed by adding a single non-accepting don’t care state with a 
self-loop transition under any input assignment (a sink state), and directing all missing 
transitions from any state to this don’t care state. Note that the automata before and after 
completion accept the same language. In BALM, an incomplete automaton can be 
completed using command complete. By default, this command adds a non-accepting 
don’t-care state. In some applications, it is necessary to add an accepting don’t-care state, 
which is done using command complete –a. 

Specialized manipulations 
An automaton A is prefix closed (so is its corresponding language) if any prefix of an 
accepting string in L(A) is also in L(A). A deterministic automaton can be trimmed to be 
prefix-closed by collapsing all non-accepting states into a single non-accepting “sink” 
state (no transition from this state to other accepting states) with a universal self-loop 
transition. BALM provides command prefix to trim an automaton to be prefix closed. 
 
A state of an automaton is progressive with respect to a set of variables U, called U-
progressive, if at least one of its next states under any valuation of U is accepting. An 
automaton is progressive with respect to U, if all of its states are U-progressive. An 
automaton can be trimmed to be progressive with respect to U by iteratively deleting 
states that are not U-progressive. BALM can trim an automaton to be progressive by 
command progressive. The number of inputs that are to be considered in U needs to 
be specified on the input line, e.g. progressive –i 5. 
 
A finite state machine (an FSM) is a six-tuple (Q, I, Σ, Ω, δ, λ), where Q is a finite set of 
states, I ⊆ Q is the set of initial states, Σ and Ω are the sets of input and output alphabets, 
respectively, and δ: Σ × Q → Q (resp. λ: Σ × Q → Ω) is the transition function (resp. the 
output function). Hence, an FSM (when converted to an automaton by combining inputs 
and outputs) differs from a typical automaton in that all states are accepting, input and 
output alphabets are differentiated. In addition, an FSM is prefix closed and input 
progressive. Given an automaton A with the specification of input and output variables, 
BALM is capable of trimming A to be an FSM. Moreover, BALM can further constrain 
the synthesized FSM to be of Moore type, that is, λ: Q → Ω is independent of input Σ. 
 
In composing two FSMs, it is sometimes necessary to rearrange (rename, reorder, create, 
or hide) input and output signals. BALM supports these rearrangements by command 
support. However, some of this is done automatically when for some of the commands. 
For example, product A1 A2 A3 will automatically change the support of A1 and 
A2 to be the least common support and then create the product A3 with that support.  



Optimization 
In BALM, a deterministic finite automaton can be state-minimized using command 
minimize based on Myhill-Nerode theorem. In addition to the above exact 
minimization, BALM provides a heuristic algorithm (command dcmin) for state 
minimization of a nondeterministic finite automaton, whose behavior, as a side effect, 
may be reduced thereafter, i.e. some of the nondeterminism may be used up in obtaining 
the result. A discussion of the use of dcmin can be found in the applications section of 
this manual. 

Verification 
Many verification problems in state-transition systems can be reduced to the checking of 
language containment, which tests if the language of one automaton is contained 
another. The checking can be accomplished by product and complement operations. In 
BALM, language containment checking is performed using command contain which 
will report if the two automata specified in the command line are related by language 
containment (or are equivalent), and optionally give counter-examples to non-
containment.   
 



Applications 

Synthesis of Unknown Components 
An important step in the design of complex systems is the decomposition of a system into 
a number of separate components, which interact in a well-defined way. Component-
based design methodology plays an important role in facilitating design reuse. Design 
reuse is an essential technique in improving productivity for complex designs. A typical 
question is how to design an unknown component X that, when combined (in a way as 
shown in Figure 1) with a known (fixed) component F, satisfies specification S of the 
overall system, denoted as SXF ⊆⋅ . 

In [YVB+01], the solution to the above unknown component problem is 
formulated in language equations. In essence, the most general solution to the unknown 
problem can be written as the language equation SFSF vuouvi •≡⋅ ⇓⇑ ,,,, ))(( , where the 

overlines denote complementations, the upward ⇑ and downward ⇓ arrows denote 
support lifting and lowering, respectively, to the specified variables. 
 

X

Fi o

uv

 
Figure 1. The composition topology of a known component F and an unknown 

component X.  
 
As an application, we show that BALM can be used to derive the most general FSM 
solution to the unknown component problem by the algorithm in Figure 2, where each 
operation corresponds to some command in BALM. 
 

Algorithm: LanguageEquationSolving 
Input: prefix closed S(i,o) and F(i,v,u,o) 
Output: most general prefix closed solution X 
begin 
01 X := Complete(S) 
02 X := Determinize(X) 
03 X := Complement(X) 
04 X := Support(X,(i,v,u,o)) 
05 X := Product(Complete(F),X) 
06 X := Support(X,(u,v)) 
07 X := Determinize(X) 
08 X := Complete(X) 
09 X := Complement(X) 
10 X := PrefixClose(X) 



11 X := Progressive(X) 
12 return X 
end  

 
Figure 2. Algorithm for computing the most general prefix-closed progressive solution. 

 
In terms of the commands of BALM, this is illustrated assuming that the specification 
automaton is S.aut and the fixed automaton is initially given in the BLIF-MV file F.mv 
as a finite state machine. 

balm> read_blif_mv F.mv 
balm> extract_aut F.aut 
 
balm> complement S.aut Sc.aut 
balm> product F.aut Sc.aut P.aut 
balm> support u(4),v(8) P.aut Ps.aut 
balm> complement Ps.aut Pc.aut 
balm> prefix Pc.aut Pp.aut 
balm> progressive –i 1 Pp.aut X.aut 

 
Here we have assumed that the u and v variables are single multi-valued variables with 4 
and 8 values in their domains respectively. Note that in the support command, u was 
listed first, since in progressive, the input to the unknown component must come 
first. 
 
Minimization of the most general solution. Command dcmin in BALM implements a 
minimization procedure DCMIN that works particularly well when the state of the fixed 
component F is communicated (through signals u) to the unknown component X. When 
the algorithm of language equation solving is done, there are a lot of input minterms u 
that do not exist (are unspecified) at a particular state of X since the state inputs from F 
usually have to agree with the internal state of X. This causes, during the solution process, 
many transitions to an accepting “don’t care” state, usually named DC1. A don’t care 
state is a sink and can be made equivalent to any other state (if it is accepting) by using 
its don’t cares (see Figure 3).  
 

                       
Figure 3. The composition topology of a known component F and an unknown 

component X.  

nnoonn--aacccceeppttiinngg    
ddoonn’’tt  ccaarree  

aacccceeppttiinngg    
ddoonn’’tt  ccaarree  ((DDCC11))    



 
Thus, any transition to DC1 can be made to go to any state. We can use this property to 
make states equivalent to each other. A sufficient condition for this is that the set of 
transitions which are care transitions (i.e. go to some accepting state other than DC1) do 
not intersect. Thus if 1 2 3, ,p p p  are the care transition predicates from states 1 2 3, ,s s s  
respectively, where 1 2 3p p p∧ ∧ =∅ , then 1 2 3, ,s s s  can be made equivalent by using 
the don’t cares to extend the care transitions of each state to 1 2 3p p p+ + . This then 
makes all three of the states equivalent.  

DCMIN works by building an incompatibility graph among the states. There is an 
edge 1 2s s→  if and only if 1 2p p∧ ≠∅ . The choice, of which states to merge together 
into a single representative equivalent state, is made by finding a minimum coloring of 
the incompatibility graph. 

The more state information communicated by F to X, the better DCMIN works. 
However, note that this is just one way of using the flexibility provided by the don’t cares 
in the solution X and certainly may not be the best way. On the other hand, DCMIN is 
very fast and in practice seems to be quite effective. Other good methods of state 
minimization are either unknown or are very computationally intensive.  

One way to understand why DCMIN works is the following. When the product 
machine is created during the solution phase to determine X, each state is a pair, one state 
from F and one state from the specification S. Although this product automaton is 
determinized and complemented to get X, the genesis of X starts out with an image of the 
states of the product. In general, we do not need to make this correspondence between 
states, and communicating the internal states of F does not make any difference here in X. 
However, when we use DCMIN, this information (correspondence between states) is 
used, hopefully to an advantage.  We will provide an illustration of the use of DCMIN in 
the next application. 
 

Synthesis of Winning Strategies for Combinatorial Games 
Finding winning strategies of some combinatorial games, such as the NIM game, tic-tae-
toe, the wolf-goat-cabbage puzzle, etc., can be formulated as solving the unknown 
component problem. Therefore, BALM can be used to synthesize winning strategies of 
these combinatorial games. There are several examples of these formulations in the 
accompanying directory of examples that is provided with BALM. 
 

Computing Sequential Flexibilities 
We illustrate this with an example where we start with a given FSM, S. We then divide it 
into two parts, calling the first part F and the second part A. We will then compute the 
maximum sequential flexibility for A. In command latch_split of BALM, we 
require that the language of the FSM XF ⋅  is contained in the language of the FSM S 
where F is a part of S containing a subset of its latches. We will use a running example, 
planet.blif, to illustrate this application. In S (which is planet.blif), the latches 
are (v7,v8,v9,v10,v11,v12). Using the command, latch_split 0-3, the 



first four latches are removed leaving the latches of F as (v11,v12). When we 
compute the product of SF ⋅  in solving for the solution of SXF ⊆⋅ , the state space 
variables of the product corresponds to  

(v11,v12,v7,v8,v9,v10,v11,v12). 
In general, values in the first, (v11,v12), need not agree with those in the last, 
(v11,v12). However, suppose we force them to agree. This sets up a simulation 
relation between the states of XF ⋅  and S, namely a state of XF ⋅ , say (0,0,sx) is 
related to a state of S,  

sx =(-,-,-,-,0,0), 
i.e. the values of (v11,v12) in F are forced to take the same values as (r4,r5,r6) 
in S. All other product states are not allowed. For example, a product state 
(0,0,1,1,0,1,0,1) can’t exist because of this forced correspondence since the two 
copies of (v11,v12) disagree. 

One way to effect this is to  
1) expose the latches in S that correspond to the latches of F, i.e. make these latches 

primary outputs of S, and  
2) make all the latches of F primary outputs of F.  

In the computation for the solution X, the primary outputs of F and S are always forced to 
have the same values since they have the same name. These two steps can be done by a 
simple manual procedure. BALM has the command latch_expose which makes all 
latches in a file, primary outputs, in addition to the normal ones. For Step 1) this can be 
applied to F. Unfortunately, in Step 2) applying latch_expose to S exposes too many 
latches of S and we have to eliminate some. We give an example to illustrate the 
procedure to be used. In the example, planet.blif is S. The six latches of 
planet.blif are (v6, …,v11). 
 

read_blif_mv planet.blif 
latch_split 0-3 
latch_expose 
write_blif_mv planet.mv 

 
read_blif_mv planetf.blif 
latch_expose 
write_blif_mv planetf.blif 
 

The command latch_split creates files planetf.blif, planeta.blif, and 
planets.script. These files reflect that all the latches of planet were made primary 
outputs. The fourth command writes the “exposed” planet network into a new file which 
we name planet.mv. The last three commands expose the latches of F as required by 
Step 2). Unfortunately, in file planet.mv, all the latches of S are exposed and not just 
the ones that remain in F, i.e. latches v11 and v12. Now we have to edit two files that 
were made by this procedure to remove the excess primary outputs of S  and reflect that S 
is not called planet.mv. 

Now we look at planet.mv (which corresponds to S) and remove the outputs 
corresponding to the first four latches, v7,v8,v9,v10: 



 
.inputs v0 v1 v2 v3 v4 v5 v6 
.outputs v13.6 v13.7 v13.8 v13.9 v13.10 v13.11 v13.12 \ 
v13.13 v13.14 v13.15 v13.16 v13.17 v13.18 v13.19 v13.20 \ 
v13.21 v13.22 v13.23 v13.24 v7 v8 v9 v10 v11 v12 

 
becomes 
 

.inputs v0 v1 v2 v3 v4 v5 v6 

.outputs v13.6 v13.7 v13.8 v13.9 v13.10 v13.11 v13.12 \ 
v13.13 v13.14 v13.15 v13.16 v13.17 v13.18 v13.19 v13.20 \ 
v13.21 v13.22 v13.23 v13.24 v11 v12 

 
Finally, we edit planets.script and replace the second input file with planet.mv 
instead of planet.blif, since this is the new specification S:  
 

solve_fsm_equ planetf.blif planet.blif \ 
v0,v1,v2,v3,v4,v5,v6,v11,v12 v7,v8,v9,v10 planetxs.aut 

 
We now look at the inputs and outputs of S, F, and X 
 
planet.mv: 
Primary inputs:  v0 v1 v2 v3 v4 v5 v6 
Primary outputs: {v11} {v12} {v13.10} {v13.11} {v13.12} {v13.13} 
{v13.14} {v13.15} {v13.16} {v13.17} {v13.18} {v13.19} 
{v13.20} {v13.21} {v13.22} {v13.23} {v13.24} {v13.6} {v13.7} 
{v13.8} {v13.9} 
 
planetf.blif: 
Primary inputs:  v10 v7 v8 v9 v0 v1 v2 v3 v4 v5 v6 
Primary outputs: {v11} {v12} {v13.10} {v13.11} {v13.12} {v13.13} 
{v13.14} {v13.15} {v13.16} {v13.17} {v13.18} {v13.19} 
{v13.20} {v13.21} {v13.22} {v13.23} {v13.24} {v13.6} {v13.7} 
{v13.8} {v13.9} 
 
planetxs.aut: 
Primary inputs: v0,v1,v2,v3,v4,v5,v6,v11,v12,v7,v8,v9,v10 
Primary outputs: Acc 
 
Note that F has extra inputs that come from X, v7,v8,v9,v10 (the v variables) and X 
has extra inputs that come from the latches of F, v11,v12, (the u varuables).  

We are now set to take advantage of the simulation relation. We execute  
 

source planetS.script 
dcmin planetxs.aut planetxs-dcmin.aut  

 



We need to use dcmin to minimize the result planetxs.aut: 
 

dcmin planetxs.aut planetxs-dcmin.aut 
 

The reason this will work well is that inputs to the solution automaton planetxs.aut 
must agree with the product state in the variables v11,v12. For example if the product 
state had 0 1 in these positions, then any input with v11 = 1 or v12 = 0 would be an 
input that would never occur, and its transition would be directed to the accepting don’t 
care state. Hence, it can be used by dcmin in minimizing the result. Looking at the 
relative sizes we see 
 

print_stats_aut planetxs.aut 
"csf": incomplete (48 st), deterministic, non-progressive 
(48 st), and non-Moore (48 st). 
13 inputs (13 FSM inputs) 49 states (49 accepting) 120 
trans 
Inputs = { v0,v1,v2,v3,v4,v5,v6,v11,v12,v7,v8,v9,v10 } 

 
and 
 

print_stats_aut planetxs-dcmin.aut 
"csf": complete, deterministic, progressive, and Moore. 
13 inputs (13 FSM inputs) 13 states (12 accepting)  61 
trans 
Inputs = { v0,v1,v2,v3,v4,v5,v6,v11,v12,v7,v8,v9,v10 } 

 
We note that it is possible to do the following procedure (without editing any files): 
 

read_blif_mv planet.blif 
latch_expose 
latch_split 0-3 
source planetS.script 
dcmin planetxs.aut planet-dcmin.aut 

 
but this would force the outputs of X to be aligned with the states of S and would overly 
constrain the solution. If this is tried on the example, the final solution planet-
dcmin.aut would have 3 more states than with the edited version. Also, in checking 
the particular solution planeta.blif, we note that it has 16 states all of which are 
deterministic, and can’t be state minimized, whereas planetxs-dcmin has 12 states 
all of which are non-deterministic (probably ND only in the outputs). 
 



Appendix 

Commands in BALM 
 
The following list contains a one line summary of all the commands available in BALM.  
 
Automata manipulation commands: 

• complement: complement an automaton (a non-deterministic automaton will be 
automatically determinized first) 

• complete: complete an automaton by adding a don't-care state 
• contain: check language containment of two automata 
• dcmin: minimize the number of states by collapsing states whose transitions into 

care states are compatible  
• determinize: determinize an automaton  
• minimize: minimize the number of states of an automaton  
• moore: trim an automaton to contain Moore states only  
• prefix: leave only accepting states that are reachable from initial states  
• product: build the product of two automata  
• progressive: leave only accepting and complete states that are reachable from 

initial states  
• support: change the input variables of an automaton  

 
Automata viewing commands: 

• plot_aut: visualize an automaton using DOT and GSVIEW 
• print_lang_size: compute the number of I/O strings accepted by the 

maximum prefix-closed sub-automaton of an automaton  
• print_nd_states: print information about non-deterministic states of an 

automaton 
• print_stats_aut: print statistics about an automaton  
• print_support: print the list of support variables of an automaton 

 
I/O commands: 

• read_blif: read the current network from the BLIF file 
• read_blif_mv: read the current network from the BLIF-MV file 
• write_blif: write the current network in the BLIF format 
• write_blif_mv: write the current network in the BLIF-MV format 

 
Miscellaneous commands: 

• alias: provide an alias for a command  
• echo: echo the arguments 
• help: print the list of available commands by group 
• history: a UNIX-like history mechanism inside the BALM shell 



• ls: print the file names in the current directory 
• quit: exit BALM  
• source: execute commands from a file  
• time: provide a simple elapsed time value 
• unalias: removes the definition of an alias 

 
MV network commands: 

• extract_aut: extract the state-transition graph from the current network as an 
automaton 

• latch_expose: make latch outputs visible as POs of the current network 
• latch_split: split the current network into two networks by dividing latches 

and the related combinational logic; generates synthesis and verification scripts 
assuming that one part is fixed and another part is unknown 

• solve_fsm_equ: solve language equation F X S⊆�  
 
Network viewing commands: 

• print: print multi-valued sum-of-products representation of nodes 
• print_factor: print algebraic factored form of nodes 
• print_io: print fanins/fanouts of nodes 
• print_latch: print the list of latches of the current network 
• print_level: print nodes in the current network by level 
• print_nd: print the list of non-deterministic nodes in the current network 
• print_range: print the numbers of values of nodes 
• print_stats: print network statistics and report the percentage of nodes 

having each representation 



Bibliography 
[BLIFMV] BLIF-MV manual.  
http://www-cad.eecs.berkeley.edu/~vis/usrDoc.html 
  
[FSA] FSA6.2XX: Finite State Automata Utilities.  
http://odur.let.rug.nl/~vannoord/Fsa 
 
 [Grail] The Grail+ Project.  
http://www.csd.uwo.ca/research/grail 
 
[Graphviz] Graphviz - Graph Visualization Software.  
http://www.graphviz.org/ 
 
[MiB03] A. Mishchenko and R. K. Brayton. A theory of nondeterministic networks. In 
Proc. Int'l Conf. on Computer-Aided Design, 2003. 
 
 [MBJ+05] A. Mishchenko et al. Efficient solution of language equations using 
partitioned representations. In Proc. Design Automation and Test in Europe, March 2005. 
 
 [Sip97] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Co.,1997. 
 
 [YVB+01] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, and A. Sangiovanni-
Vincentelli. Solution of parallel language equations for logic synthesis. In Proc. Int'l 
Conf. on Computer-Aided Design, pages 103--110, 2001. 
 
 [YVB+03] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, and A. Sangiovanni-
Vincentelli. Compositionally progressive solutions of synchronous language equations. In 
Proc. Int'l Workshop on Logic and Synthesis, pages 148--155, 2003. 
 
 [YVB+05] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, and A. Sangiovanni-
Vincentelli. Sequential synthesis by language equation solving. Submitted to IEEE 
Transaction on Computer-Aided Design, 2005. 
 


