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Abstract

SIS is an interactive tool for synthesis and optimization of sequential circuits. Given a state transition table, a

signal transition graph, or a logic-level description of a sequential circuit, it produces an optimized net-list in the target

technology while preserving the sequential input-output behavior. Many different programs and algorithms have been

integrated into SIS, allowing the user to choose among a variety of techniques at each stage of the process. It is built

on top of MISII [5] and includes all (combinational) optimization techniques therein as well as many enhancements.

SIS serves as both a framework within which various algorithms can be tested and compared, and as a tool for

automatic synthesis and optimization of sequential circuits. This paper provides an overview of SIS. The first part

contains descriptions of the input specification, STG (state transition graph) manipulation, new logic optimization

and verification algorithms, ASTG (asynchronous signal transition graph) manipulation, and synthesis for PGA’s

(programmable gate arrays). The second part contains a tutorial example illustrating the design process using SIS.

1 Introduction

The SIS synthesis system is specifically targeted for sequential circuits and supports a design methodology that allows

the designer to search a larger solution space than was previously possible. In current practice the synthesis of

sequential circuits proceeds much like synthesis of combinational circuits: sequential circuits are divided into purely

combinational blocks and registers. Combinational optimization techniques are applied to the combinational logic

blocks, which are later reconnected to the registers to form a single circuit. This limits the optimization by fixing

the register positions and optimizing logic only within combinational blocks without exploiting signal dependencies

across register boundaries. Verification techniques are limited to verifying machines with the same encoding. Finally,

it is cumbersome to separate the circuit into logic and registers only to reconstruct it later. In this paper, a sequential

circuit design methodology is described; it is implemented through a system that employs state-of-the-art synthesis

and optimization techniques. This approach is illustrated with an example demonstrating the usefulness of these new

techniques and the flexibility the designer can exploit during the synthesis process.

Many algorithms have been published for various stages of sequential synthesis. For synchronous circuits, these

include methods for state assignment [24, 58], state minimization [17, 31], testing [16], retiming [22], technology

mapping [33], verification [6, 10], timing analysis, and optimization across register boundaries [11, 25, 28, 29].

For asynchronous circuits, these include methods for hazard-free synthesis [20, 32]. However, no comprehensive

evaluation of the algorithms and no complete synthesis system in which all of these algorithms are employed has been
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reported to date. A complete sequential circuit synthesis system is needed, both as a framework for implementing and

evaluating new algorithms, and as a tool for automatic synthesis and optimization of sequential circuits.

SIS is an interactive tool like MISII, but for sequential circuit synthesis and optimization. It is built on top of MISII

and replaces it in the Octtools [12], the Berkeley synthesis tool set based on the Oct database. While MISII operated

on only combinational circuits, SIS handles both combinational and sequential circuits. In the Octtools environment,

a behavioral description of combinational logic can be given in a subset of the BDS language (the BDS language was

developed at DEC [1]). The program bdsyn [45] is used to translate this description into a set of logic equations, and

then bdnet is used to connect combinational logic and registers and create an Oct description file. Alternately, the

starting point can be either a state transition table and SIS is used to invoke state assignment programs to create the

initial logic implementation, or a signal transition graph and SIS is used to create a hazard-free logic implementation.

SIS is then used for optimization and technology mapping; placement and routing tools in the Octtools produce a

symbolic layout for the circuit.

The SIS environment is similar to MISII: optimization is done for area, performance, and testability. System-level

timing constraints can be specified for the I/O pins. External “don’t care” conditions, expressing given degrees of

freedom in the logic equations, can be supplied and used in the optimization. Synthesis proceeds in several phases:

state minimization and state assignment, global area minimization and performance optimization, local optimization,

and technology mapping. SIS is interactive, but as in MISII scripts are provided to automate the process and guide the

optimization steps.

In the sequel, the main new components of SIS will be described (i.e. those algorithms and operations not available

in MISII), including an input intermediate format for sequential circuits. This is followed by an example illustrating the

use of SIS in the design process.

2 Design Specification

A sequential circuit can be input to SIS in several ways (see Figure 1), allowing SIS to be used at various stages of the

design process. The two most common entry points are a net-list of gates and a finite-state machine in state-transition-

table form. Other methods of input are by reading from the Oct database, and through a sequential circuit net-list

called SLIF (Stanford Logic Interchange Format) [15]. For asynchronous circuits, the input is a signal transition graph

[8].
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2.1 Logic Implementation (Netlist)

The net-list description is given in extended BLIF (Berkeley Logic Interchange Format) which consists of interconnected

single-output combinational gates and latches (see Appendix A for a description). The BLIF format, used in MISII,

has been augmented to allow the specification of latches and controlling clocks. The latches are simple generic delay

elements; in the technology-mapping phase they are mapped to actual latches in the library. Additionally, the BLIF

format accepts user-specified don’t care conditions. Designs can be described hierarchically although currently the

hierarchy information is not retained in the internal data structure resulting in a flat netlist 1.

2.2 State Transition Graph (STG)

A state transition table for a finite-state machine can be specified with the KISS [26] format, used extensively in state

assignment and state minimization programs. Each state is symbolic; the transition table indicates the next symbolic

state and output bit-vector given a current state and input bit-vector. External don’t care conditions are indicated by

a missing transition (i.e., a present-state/input combination that has no specified next-state/output) or by a ‘-’ in an

output bit (indicating that for that present-state/input combination that particular output can be either 0 or 1).

2.3 Internal Representation of the Logic and the STG

Internally, the BLIF file for a logic-level specification is represented by two Boolean networks, a care network, and a

don’t care network representing the external don’t cares. Each network is a DAG, where each node represents either

a primary input x
i

, a primary output z
i

, or an intermediate signal y
i

. Each y

i

has an associated function F

i

, and an

edge connects node i to node j if the function at node j depends explicitly on the signal i. The don’t care network has

the same number of outputs as the care network: an output of ‘1’ in the don’t care network under an input condition

indicates for that input, either ‘0’ or ‘1’ is allowed for that output in the care network. Simultaneously, the KISS

specification (if present) is stored as an STG (state transition graph) structure. The network and STG representations

can be given simultaneously by embedding the KISS file in the BLIF specification. SIS provides routines for interactively

manipulating both representations of a single circuit as described in Sections 3.1 and 3.2. An example of an STG and

a logic implementation is shown in Figure 2; the corresponding BLIF specification with an embedded state table is on

the right.

With two internal representations for a single synchronous circuit (STG and logic), it is necessary to check the

consistency of the two representations. This is done with the stg cover command, which does a symbolic simulation

of the logic implementation for each edge of the STG to ensure that the behavior specified by the edge is implemented

by the logic (the STG “covers” the logic implementation). This command should be invoked if the two representations

are initially given for a circuit.

2.4 Signal Transition Graph (ASTG)

The signal transition graph is an event-based specification for asynchronous circuits. It is composed of transitions,

representing changes of values of input or output signals of the specified circuit, and places, representing pre– and

post–conditions of the transitions. A place can be marked with one or more tokens, meaning that the corresponding

condition holds in the circuit. When all the pre–conditions of a transition are marked, the transition may fire (meaning

that the corresponding signal changes value), and the tokens are removed from its pre–conditions and added to its

post–conditions. Hence a signal transition graph specifies the behavior both of an asynchronous circuit and of the

environment where it operates. The causality relations described by places joining pairs of transitions represent how

the circuit and its environment can react to signal transitions.

For example, see Figure 3(a), which represents a fragment of a signal transition graph specification. Places are

shown as double circles, transitions are shown as simple circles, and places with exactly one predecessor and one

successor (implicit places) are omitted. Transitions b�1 and b�2 are two distinct falling transitions of signal b. Initially,

place p1 is marked. Either a+ or b�1 can fire, but not both, since firing one of them removes the token from the

1A new program called HSIS (hierarchical SIS) is currently under development for synthesis of hierarchical netlists.
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.model circuit

.inputs in1 in2

.outputs output

.start_kiss

.i 2

.o 1
00 st0 st0 0
−1 st0 st1 1
...
.end_kiss
.latch b a
.latch d c
.names a in1 in2 b
111 1
.names c in1 in2 d
−−1 1
−1− 1
1−− 1
.names b d output
01 1
10 1
.end

Figure 2: STG, Logic Implementation, Partial BLIF file
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.inputs a b

.outputs c d
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....
.marking { p1 }
.end
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Figure 3: A Signal Transition Graph, its text file representation and its State Graph
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predecessor of the other one (a+ and b

�

1 are in conflict). If a+ fires, signal a changes value from 0 to 1. If b�1
fires, signal b changes value from 1 to 0. Standard digital circuits are deterministic, so this kind of non-deterministic

choice between firing transition is allowed only for input signals (it allows a more abstract modeling of the circuit

environment). If a+ fires, it marks the implicit places between a

+ and b

�

2 and between a

+ and c

+. So a

+ causes

transitions b�2 and c

+ to be enabled (a+ and b

�

2 are ordered). Transitions b�2 and c

+ do not share a pre–condition, so

they can fire in any order (b�2 and c

+ are concurrent). When both have fired, d+ becomes enabled, because both its

pre–conditions are marked, and so on.

Note that the transitions in this fragment allow us to infer a value for each signal in each distinct marking of the

signal transition graph. For example, in the initial marking a = 0 (because its first transition, a+, will be rising), b = 1

(because its first transition, either b�1 or b�2 , will be falling), and similarly c = 0 and d = 0. The value label attached

to each marking must be consistent across different firing sequences of the signal transition graph. For example, when

p2 is marked, the value for d is always 0, independent of whether we fired d

� or b�1 (in the latter case the value for d

is the same as when p1 is marked, since no transition of d fires between p1 and p2).

The existence of such a consistent labeling of each marking with signal values is the key for the correctness of a

signal transition graph, together with three other properties:

� liveness: for every transition, from every marking that can be reached from the initial one, we must be able to

reach a marking where the transition is enabled (no deadlocks and no “operating cycles” that cannot be reached

from each other).

� safeness: no more than one token can be present in a place in any reachable marking.

� free-choice: if a place has more than one successor (p1 in the example), then it must be the only predecessor of

those transitions.

Furthermore a signal transition graph must be pure, i.e. no place can be both a predecessor and a successor of the same

transition, and place-simple, i.e. no two places can have exactly the same predecessors and successors.

A state machine (SM) is a signal transition graph where each transition has exactly one predecessor and one

successor place (no concurrency). A marked graph (MG) is a signal transition graph where each place has exactly one

predecessor and one successor transition (no choice). These two classes of signal transition graphs are useful because

some synthesis algorithms can be used only, for example, on marked graphs, and some analysis algorithms decompose

a general signal transition graph into state machine components or into marked graph components (see Section 3.3).

A signal transition graph can be represented as directed graph in a text file and read into SIS with the read astg

command (an example is shown in Figure 3(b)). The first three lines (.model, .inputs and .outputs) have the

same meaning as in the BLIF format. In addition, the keyword .internal can be used to describe signals that are

not visible to the circuit environment, e.g. state signals. Everything after a “#” sign is treated as a comment.

Each line after .graph describes a set of graph edges. For example p1 a+ b-/1 describes the pair of edges

between p1 and a

+ and b

�

1 respectively. The optional .marking line describes the set of initially marked places (a

blank-separated list surrounded by braces). Implicit places, e.g. the place between a

+ and b

�

2 , can be denoted in the

initial marking by writing its predecessor and successor transitions between angle brackets, e.g. <a+,b-/2>.

In addition to input, output and internal transitions, the signal transition graph model also allows dummy signals.

Dummy signals, denoted by the keyword .dummy, just act as “placeholders” or “synchronizers” and do not represent

any actual circuit signal (so their transitions are not allowed to have a “+” or “-” sign). Dummy signals are very useful,

for example, in transforming an asynchronous finite state machine into a signal transition graph by direct translation

[9]. In this translation one explicit place represents each state, and it has one dummy transition for each output edge,

followed by a set of transitions representing input signal changes2, followed by state signal changes, followed by

output signal changes, followed by another dummy transition, followed by the place corresponding to the next state.

Note that the input transitions must precede the state and output transitions in order to imply the correct deterministic

behavior, because the dummy transitions have no effect on the observable signals. In order for this direct translation

to be possible, every finite state machine state must be entered with a single set of values of input and output signals,

2If more than one input signal changes value, this situation could not be represented, in general, by a free-choice signal transition graph without

dummy transitions.
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Figure 4: An asynchronous finite state machine and its signal transition graph specification

i.e. it must be a Moore-type machine, and each edge entering the state must have exactly the same input signal labels

(this is often the case, for example, with classical “primitive flow tables”, see [55]).

Suppose that a finite state machine, whose fragment appears in Figure 4(a), has a state s1 with code 00, where all

input and output signals signals have the value 0. If inputs a and b rise, then it makes a transition to a state s2, with

code 01, where outputs d and e have value 1. Otherwise, if input c rises, it makes a transition to state s3, with code 11,

where no output change occurs.

The finite state machine fragment can be represented by the following signal transition graph fragment (place p1

corresponds to state s1, place p2 to state s2, and place p3 to state s3), shown in Figure 4(b):

.inputs a b c ...

.outputs d e ...

# state signals

.internal x0 x1

.dummy eps

.graph

...

# state s1: two transitions

p1 eps/1 eps/2

# input change

eps/1 a+ b+

# state change 00 -> 01

a+ x0+

b+ x0+

# output change

x0+ d+ e+

# next state is s2

d+ eps/3

e+ eps/3

eps/3 p2

# input change

eps/2 c+

# state change 00 -> 11

c+ x0+ x1+
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# no output change

# next state is s3

x0+ eps/4

x1+ eps/4

eps/4 p3

...

3 Part I: The SIS Synthesis and Optimization System

SIS contains many new operations and algorithms, and it is the combination of these within a uniform framework

that allows the designer to explore a large design space. Some of these are enhancements to the combinational

techniques previously employed in MISII. These include improvements to performance optimization (both restructuring

and technology mapping), storage and use of external don’t cares, improved node minimization, and faster divisor

extraction. In addition, new sequential techniques are included: an interface to state minimization and state assignment

programs, retiming, sequential circuit optimization algorithms, finite-state machine verification, technology mapping

for sequential circuits, and synthesis of asynchronous designs.

3.1 STG Manipulations

3.1.1 State Minimization

A state transition graph (STG) contains a collection of symbolic states and transitions between them. The degrees of

freedom in this representation, or don’t cares, are either unspecified transitions or explicit output don’t cares. These

degrees of freedom, along with the notion that two states are equivalent if they produce equivalent output sequences

given equivalent input sequences, can be exploited to produce a machine with fewer states. This usually translates to

a smaller logic implementation. Such a technique is called state minimization and has been studied extensively (e.g.

[17, 31]). For completely specified machines the problem can be solved in polynomial time, while in the more general

case of incompletely specified machines the problem is NP hard.

In SIS, state minimization has been implemented to allow the user to choose among various state minimization

programs. No single state minimization algorithm has been integrated, but rather, the user can choose among state

minimization programs, distributed with SIS, or other programs that conform to an I/O specification designed for state

minimization programs. Programs that conform to the specification can be executed from the SIS shell. It has simple

requirements, e.g. that the program use the KISS format for input and output. For example, the user may invoke the

STAMINA [17] program, a heuristic state minimizer for incompletely specified machines distributed with SIS, as follows:

sis> state_minimize stamina -s 1

In this case, STAMINA is used with its option ‘-s 1’ to perform state minimization on the current STG. When the

command is completed, the original STG is replaced by the one computed by STAMINA with (possibly) fewer states.

3.1.2 State Assignment

State assignment provides the mapping from an STG to a netlist. State assignment programs start with a state transition

table and compute optimal binary codes for each symbolic state. These binary codes are used to create a logic-level

implementation by substituting the binary codes for the symbolic states and creating a latch for each bit of the binary

code.

In SIS, the state assignment mechanism is similar to state minimization: the user is free to choose among state

assignment programs, provided those programs conform to a simple specification (in this case, the input is KISS and

the output is BLIF). A call to a state assignment program, such as

sis> state_assign nova -e ih

7



will perform optimal state assignment on the STG and return a corresponding logic implementation. Two state

assignment programs, JEDI[24] and NOVA [58] are distributed with SIS. JEDI is a general symbolic encoding program

(i.e., for encoding both inputs and outputs) that can be used for the more specific state encoding problem; it is targeted

for multi-level implementations. NOVA is a state assignment program targeted for PLA-based finite-state machines; it

produces good results for multi-level implementations as well.

After state assignment there may be unused state codes, and from the KISS specification, unspecified transitions

and output don’t cares. These are external don’t cares for the resulting logic, and can be specified in the BLIF file that

is returned by the state assignment program, as is done with NOVA. These don’t care conditions will be stored and

automatically used in some subsequent optimization algorithms, such as full simplify (see Section 3.2.1).

3.1.3 STG Extraction

STG extraction is the inverse of state assignment. Given a logic-level implementation, the state transition graph can

be extracted from the logic for subsequent state minimization or state assignment. This provides a way of re-encoding

the machine for a possibly more efficient implementation. The STG extraction algorithm involves forward simulation

and backtracking to find all states reachable from the initial state. Alternately, all 2n states can be extracted, where

n is the number of latches. The resulting STG is completely specified because it is derived from the implementation

(which is completely specified by definition) and because the external don’t cares in the don’t care network are not

used during the extraction. Thus to minimize the size of the STG the don’t cares should be given explicitly for the

STG representation. The stg extract operation should be used with caution as the STG may be too large to extract;

the STG is in effect a two-level (symbolic) sum-of-products form.

3.2 Netlist Manipulations

SIS contains MISII and all the combinational optimization techniques therein. This includes the global area minimization

strategy (iteratively extract and resubstitute common sub-expressions, eliminate the least useful factors), combinational

speed-up techniques based on local restructuring, local optimization (node factoring and decomposition, two-level logic

minimization using local don’t care conditions), and technology mapping for area or performance optimization. Some

of these techniques have been improved significantly over the last available version of MISII. In addition,new techniques

for both combinational and sequential circuits have been introduced.

3.2.1 Combinational Optimization

Node Simplification

The logic function at a node is simplified in MISII using the simplify command which uses the two-level logic

minimizer ESPRESSO [4]. The objective of a general two-level logic minimizer is to find a logic representation with

a minimal number of implicants and literals while preserving the functionality. There are several approaches to this

problem. In ESPRESSO, the offset is generated to determine whether a given cube is an implicant in the function. The

input usually contains a cover for the onset and a cover for the don’t care set. A cover for the offset is generated

from the input using a complement algorithm based on the Unate Recursive Paradigm [4]. The number of cubes in

the offset can grow exponentially with the number of input variables; hence the offset generation could be quite time

consuming. In the context of a multi-level network, node functions with many cubes in the offset and don’t care set

happen quite often, but the initial cover of the onset is usually small, and both the initial cover and the don’t care cover

mainly consist of primes.

To overcome the problem of generating huge offsets, a subset of the offset called the reduced offset is used [27].

The reduced offset for a cube is never larger than the entire offset of the function and in practice has been found to be

much smaller. The reduced offset can be used in the same way as the full offset for the expansion of a cube and no

quality is lost. The use of the reduced offset speeds up the node simplification; however, if the size of don’t care set

is too large, the computation of reduced offsets is not possible either. As a result, filters [40] must be introduced to

keep the don’t care size reasonably small. The filters are chosen heuristically with the goal that the quality of the node

simplification is not reduced significantly.
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Figure 5: Node Simplification

To perform node simplification on a node in a multi-level network, an appropriate don’t care set must first be

generated. In MISII, subsets of the satisfiability and observability don’t care sets (SDC and ODC respectively, see [2])

are used. The SDC captures conditions which can never happen in the network and hence are don’t cares (i.e. if

y1 = x̄1, then y1x1 is a don’t care because y1 and x1 will never both be 1). The ODC captures changes which may

occur without affecting the outputs (i.e. if y1 is the only output and y1 = y2y3, then ȳ2 is a don’t care for y3 because

when y2 = 0 the value of y3 is not observable at y1).

In latter versions of MISII and in SIS, the generation of the don’t care sets has been improved significantly. A subset

of the SDC is used that is known as the support subset [40] and consists of the satisfiability don’t cares of all the nodes

whose support is included in the support of the node being simplified. By using this subset we can effectively cause a

Boolean substitution of the nodes of the network into the node being simplified, but in general we do not get maximum

simplification of the node. As an example of the subset filter, while simplifying node y2 shown in Figure 5, the SDC

for node y9 is generated because the support of y9 is a subset of the support of y2. Thus substitution of node y9 in y2

will happen if y2 can be expressed in terms of y9 and it results in a simpler function for y2.

The techniques for computing observability don’t cares compute these in terms of intermediate variables in the

network. External don’t cares (EDC) are expressed with a separate don’t care network, as described in Section 2.

To fully utilize ODC’s plus EDC’s for the simplification of each intermediate node one has to find how the current

representation of the node is related to these don’t cares. The relation between EDC’s plus ODC’s and the current

representation at each node is usually only through primary inputs. To get the most simplification possible for each

node, one has to provide this connection, which is the structure of the Boolean network, to the two-level minimizer.

The most straightforward approach is to establish this connection through SDC’s. SDC’s are generated for all the

nodes in the transitive fanin cone of the node being simplified to relate the current representation of the node to the

primary inputs. SDC’s are also generated to relate the EDC plus ODC to the primary inputs. These are all the nodes

in the transitive fanin cone of the support of the EDC plus ODC.

Example: The EDC plus ODC for y2 in Figure 5 is d2 = y1 + y12 (y1 is from the ODC and y12 is from the

EDC). SDC’s for nodes y7 and y8 relate y2 to primary inputs. SDC’s for nodes y1; y3; y4; y10; y11, and y12 relate d2 to

primary inputs. We also generate SDC of y9 because it may be substituted in the representation of y2. The input to the

two-level minimizer has 15 input variables and 33 cubes for this very small example. After node simplification, the

representation at y2 becomes f2 = y9 + x5x6.
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It is obvious that this approach is not practical for networks with many levels; the size of satisfiability don’t care

set grows very large in such cases and node simplification becomes computationally too expensive.

To reduce the size of the input to the two-level minimizer, several techniques are employed. External and

observability don’t cares are computed for each node using the techniques in [41]. The external don’t cares are only

allowed in two-level form expressed directly in terms of primary inputs. A subset of the ODC called the CODC

(compatible ODC) is computed for the simplification of each node. The compatible property ensures that the don’t

care sets on nodes can be used simultaneously with no need for re-computation after each node has been simplified.

CODC’s are computed in terms of intermediate variables in the network. A collapsing and filtering procedure is used

to find a subset of the CODC which is in the transitive fanin cone of the node being simplified. A limited SDC is

generated to use the CODC plus EDC in two-level form. However, EDC’s cannot be represented in two-level form

in many cases because the number of cubes in the sum-of-products representation of EDC’s grows very large. Also,

because of collapsing and filtering and the limited SDC generated the quality is reduced considerably compared to

what could be obtained using the full don’t care set.

Example: The EDC plus ODC for y2 in Figure 5 in terms of primary inputs is d2 = x1x2x3x4 +x1x2x3x4. SDC’s

for nodes y7; y8 and y9 must be generated. The input to the two-level minimizer has 9 input variables and 15 cubes.

After node simplification, the representation at y2 becomes as before f2 = y9 + x5x6.

There is one final improvement to the don’t care set computation. Since each node has a local function f
i

: Br

�!

B (assuming r fanins), ideally one would like to express the external plus observability don’t cares of each node in

terms of its immediate fanins, not the primary inputs. These are minterms m
l

2 B

r for which the value of f
i

can be

either 1 or 0 and the behavior of the Boolean network is unchanged. These local don’t cares are related to the EDC,

ODC of y
i

, and SDC’s of the network and are as effective in node simplification as the full don’t care set.

Let y
�

be the node being simplified and f

�

: Br

�! B be the local function at this node in terms of its fanins

y1; : : : ; yr. The local don’t care set dl
�

is all the points in Br for which the value of f
�

is not important.

To find d

l

�

, we first find the observability plus external don’t care set, d
g

�

, in terms of primary inputs. The care set

of y
�

in terms of primary inputs is d
g

�

. The local care set dl
�

is computed by finding all combinations in Br reachable

from d

g

�

. Any combination in Br that is not reachable from d

g

�

is in the local don’t care set dl
�

.

Example: The local don’t care for y2 is dlm2 = y7y8 (computed by effectively simulating the function x1x2x3x4 +

x1x̄2x3x̄4 from the previous example). By examining the subset support, we determine that the SDC of y9 should be

included. The input to the two-level minimizer has 5 inputs and 7 cubes. After node simplification, the representation

at y2 becomes as before f2 = y9 + x5x6.

The command full simplify in SIS uses the satisfiability, observability, and external don’t cares to optimize each

node in a multi-level network as described above. It first computes a set of external plus observability don’t cares for

each node: a depth-first traversal of the network starts at the outputs with the external don’t cares, and works backward

computing CODC’s for each node. At each intermediate node, the local don’t cares are computed in terms of fanins

of the node being simplified by an image computation which uses BDD’s. This don’t care set is augmented with some

local SDC’s, and minimized with the two-level minimizer ESPRESSO [4]. Results for full simplify are reported in [42].

This command should not be applied to networks where the BDD’s become too large; there is a built-in mechanism to

halt the computation if this occurs.

Kernel and Cube Extraction

An important step in network optimization is extracting new nodes representing logic functions that are factors of

other nodes. We do not know of any Boolean decomposition technique that performs well and is not computationally

expensive; therefore we use algebraic techniques. The basic idea is to look for expressions that are observed many

times in the nodes of the network and extract such expressions. The extracted expression is implemented only once

and the output of that node replaces the expression in any other node in the network where the expression appears.

This technique is dependent on the sum-of-products representation at each node in the network and therefore a slight

change at a node can cause a large change in the final result, for better or for worse.

The current algebraic techniques in MISII are based on kernels [3]. The kernels of a logic expression f are defined

as

K(f) = fg j g = f=c; g is cube free g
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where c is a cube, g has at least two cubes and is the result of algebraic division of f by c, and there is no common

literal among all the cubes in g (i.e. g is cube free). This set is smaller than the set of all algebraic divisors of the

nodes in the network, therefore it can be computed much faster and is almost as effective. One problem encountered

with this in practice is that the number kernels of a logic expression is exponentially larger than the number of cubes

appearing in that expression. Furthermore, after a kernel is extracted, there is no easy way of updating other kernels,

so kernel extraction is usually repeated. Once all kernels are extracted the largest intersection that divides most nodes

in the network is sought. There is no notion of the complement of a kernel being used at this stage. After kernels are

extracted, one looks for the best single cube divisors and extracts such cubes. The kernels and cubes are sought only in

normal form. Later on, Boolean or algebraic resubstitution can affect division by the complement as well. Extraction

of multi-cube divisors and common cubes from a network in MISII is done with the gkx and gcx commands.

A more recent algebraic technique extracts only two-cube divisors and two-literal single-cube divisors both in

normal and complement form [57]. This approach has several advantages in terms of computation time while the

quality of the final result is as good as kernel-based approaches according to [57] as well as our experimental results. It

is shown that the total number of double-cube divisors and two-literal single-cube divisors is polynomial in the number

of cubes appearing in the expression. Also, this set is created once, and can be efficiently updated when a divisor is

extracted. Additionally, one looks for both normal and complement form of a divisor in all the nodes in the network

so in choosing the best divisor a better evaluation can be made based on the usefulness of the divisor as well as its

complement. There is also no need for algebraic resubstitution once divisors are extracted.

The algorithm works as follows. First all two-cube divisors and two-literal single-cube divisors are recognized and

put in a list. A weight is associated with each divisor which measures how many literals are saved if that expression is

extracted. This weight includes the usefulness of the complement in the cases where the complements are single cubes

or other two-cube divisors. Common cube divisors are also evaluated at the same time so that "kernel" extraction and

"cube" extraction are nicely interleaved by this process. The divisor with highest weight is extracted greedily. All

other divisors and their weights are updated and the whole process is repeated until no more divisors can be extracted.

This technique has been implemented in SIS and is called fast extract or fx. Generally, it should replace the MISII

commands gkx and gcx since its quality is comparable but its speed in many cases is substantially higher [43].

One shortcoming of this approach is that the size of each divisor is limited to no more than two cubes. However,

large nodes are effectively extracted by the combined process of fast extract and elimination. Elimination is used to

increase the size of some divisors and remove others that are not effective.

Test Pattern Generation and Redundancy Removal

A very efficient automatic test pattern generation algorithm for combinational logic has been implemented in SIS.

First, fault collapsing is performed across simple gates; both fault equivalence and fault dominance are used to reduce

the fault list. Random test generation is done using parallel fault simulation. After the random patterns have been

simulated, the algorithm performs a deterministic search to find tests for the remaining faults. This part is based on

the algorithm reported in [19]: a set of equations is written to express the difference between the good and faulty

circuits for a particular fault and Boolean satisfiability is used to find a satisfying assignment for these equations.

The implementation of the algorithm in SIS has been substantially improved for speed. While the single-stuck-fault

test pattern generation problem is NP-complete, this implementation has been able to produce 100% stuck-at fault

coverage in all test cases available to us. The command atpg file in SIS produces a set of test vectors in the file file.

The redundancy removal command red removal is based on these techniques and iteratively removes all redundant

faults.

Technology Mapping

MISII uses a tree-covering algorithm to map arbitrary complex logic gates into gates specified in a technology

library [39]. (The technology library is given in genlib format, which is described in Appendix B.) This is done

by decomposing the logic to be mapped into a network of 2-input NAND gates and inverters. This network is then

“covered” by patterns that represent the possible choices of gates in the library. During the covering stage the area

or the delay of the circuit is used as an optimization criterion. This has been successful for area minimization but

ineffective for performance optimization because the load at the output of gates is not considered when selecting
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gates and no optimization is provided for signals that are distributed to several other gates. Recent refinements have

significantly improved it for performance optimization, as reported in [54]; tree covering has been extended to take

load values into account accurately. In addition, efficient heuristic fanout optimization algorithms, reported in [51],

have been extended and implemented. They are also used during tree covering to estimate delay at multiple fanout

points; this enables the algorithm to make better decisions in successive mapping passes over the circuit.

In addition to the technology mapping for delay another command that inserts buffers in the circuit to reduce

delay, is provided. The command buffer opt [47] takes as input a circuit mapped for minimum area (map -m 0) and

inserts buffers to improve circuit performance. This command is subsumed by the map -m 1 -A command which

in addition to adding buffers also makes selections of the gates to implement the logic functions. However, it does

provide a design whose area and delay are intermediate to the minimum-area and minimum-delay mapped circuits.

Restructuring for Performance

The delay of the circuit is determined by the multi-level structure of the logic as well as the choice of gates used

to implement the functions. There are two algorithms that address the restructuring of the logic to improve the delay.

These are speed up [48] and reduce depth [52].

The speed up command operates on a decomposition of the network in terms of simple gates (2-input NAND gates

and inverters). This description is the same as that used by technology mapping. The speed up command tries to reduce

the depth of the decomposed circuit with the intuition that a small depth representation will result in a smaller delay.

The restructuring is performed by collapsing sections along the long paths and resynthesizing them for better timing

characteristics [48]. Following the restructuring the circuit is mapped for minimum delay. The recommended use of the

speed up command is to run the following on an area-optimized circuit: gd *; eliminate -1; speed up;

map -m 1 -A.

The reduce depth command takes a different approach to technology-independent network restructuring for

performance optimization [52]. The idea is to uniformly reduce the depth of the circuit. It does this by first clustering

nodes according to some criteria and then collapsing each cluster into a single node. The clusters are formed as follows:

a maximum cluster size is computed, and the algorithm finds a clustering that respects this size limit and minimizes the

number of levels in the network after collapsing the clusters. The cluster size limit can be controlled by the user. The

clustering and collapsing results in a large area increase. Hence, it is important to follow the clustering with constrained

area-optimization techniques that will not increase the circuit depth. This is done by using the simplify -l and

fx -l commands. The -l option ensures that depth of the circuit will not increase. A special script script.delay

that uses the reduce depth command is provided for automating synthesis for performance optimization.

3.2.2 Sequential Optimization

All of the combinational techniques described above can be applied to the combinational blocks between register

boundaries in a sequential circuit. Further improvements can be made by allowing the registers to move and by

performing optimizations across register boundaries. Some of these techniques are described in the following section,

including retiming, retiming and resynthesis, and retiming don’t cares. Some extensions are required for the technology

mapping algorithms to work on sequential circuits. Finally, sequential don’t cares based on unreachable states can be

computed and used during node minimization.

Retiming

Retiming [22] is an algorithm that moves registers across logic gates either to minimize cycle time, minimize the

number of registers, or minimize the number of registers subject to a cycle-time constraint. It operates on synchronous

edge-triggered designs. A particular gate is retimed forward by moving registers from each of its fanins to each of its

fanouts (see Figure 6). The sequential I/O behavior of the circuit is maintained. An example of retiming for minimum

cycle time taken from [21] is shown in Figure 7. This example represents a correlator circuit, which takes a stream

of bits and compares it with a pattern a0; a1; a2; a3. The delays of each of the components are given (delay = 3 for a

comparator, 7 for an adder). For this circuit, the cycle time is reduced from 24 to 13.

The original algorithm [23] was based on a mixed-integer linear programming formulation for determining whether

a particular cycle time is feasible; if so, the correct register positions are determined. Later, more efficient relaxation-
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Figure 7: Retiming the Correlator Circuit

based techniques were reported [44]. Both approaches are implemented in the retime command in SIS. To determine

the optimal cycle time, the feasible cycle time algorithm is combined with a binary search procedure through a range

of cycle times.

The original circuit may have an initial state associated with the registers, and this initial state should be preserved

during retiming as it may affect subsequent optimization and behavior of the circuit. Although the retimed circuit

may not have an equivalent reset state, a method for computing the new initial state when possible is reported in [50].

It uses implicit state enumeration techniques (see Section 3.2.2) to find a cycle of states containing the reset state.

Simulation along the cycle is used to determine the new initial state for the retimed circuit.

Recently the notion of a resetable circuit was proposed [37]. Resetable circuits have an easily computed initializing

sequence which brings the machine to a known state independent of the state on power-up. Although retiming preserves

the resetable property, Boolean operations may not. At a later date the initial state re-computation after retiming may

be combined in SIS with initializing sequences, so that an optimal choice can be made.

Retiming Don’t Cares

Don’t care conditions, used for minimization of the logic function at each node in a network, are computed based

on other nodes in the network. For sequential circuits, this is done by considering each combinational logic block

between register boundaries as a separate network: the inputs and outputs of each block consist of primary inputs and

outputs as well as register outputs and inputs. The don’t care conditions are computed based on the boundaries of these

blocks.

During retiming, the registers are moved and these boundaries change. This invalidates the computed don’t care

information, even though the combinational logic function at each node is unchanged. An algorithm for preserving

the maximal don’t care sets during retiming has been reported [46] and is currently being implemented in SIS (it is not

available in the current release of SIS). Although often the don’t care information can be re-computed based on the

new structure of the logic blocks, in some cases this results in a smaller don’t care set. Some of the don’t cares that

depend on the original structure must be translated to don’t cares for the retimed structure or they are lost. In particular,

external, or user-specified don’t cares cannot be re-computed based on the new logic blocks and should be preserved

during retiming.
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Figure 8: Retiming and Resynthesis Example

As a by-product of the investigation on retiming don’t cares, an algorithm was developed for propagating don’t

care conditions forward in a network. That is, given the don’t cares for the inputs of a node, an appropriate don’t

care function is computed for the output of the node. Techniques for propagating don’t cares backward have already

been developed in the work on ODC’s [42]. Together, the forward and backward propagation algorithms can be used

to propagate don’t care conditions completely throughout a network, regardless of where these don’t cares originate.

Retiming and Resynthesis

Retiming finds optimal register positions without altering the combinational logic functions at each node. Standard

combinational techniques optimize a logic network, but given a sequential circuit, the optimization is limited to each

combinational block: interactions between signals across register boundaries are not exploited.

These two techniques are combined in the retiming and resynthesis algorithm [28]. The first step is to identify the

largest subcircuits that can be peripherally retimed, i.e. that can be retimed in such a way as to move all the registers to

the boundaries of the subcircuit. Peripheral retiming is an extended notion of retiming where “negative” latches at the

boundary are allowed (time is borrowed from the environment) as long as they can be retimed away after resynthesis.

After peripheral retiming, standard combinational techniques are used to minimize the interior logic. Finally, the

registers are retimed back into the circuit to minimize cycle time or the number of registers used. An example of this

procedure is shown in Figure 8. In the example, pure combinational optimization would not yield any improvement,

and standard retiming as it was first described cannot be applied to the circuit. It is only by combining peripheral

retiming, which allows negative registers, and resynthesis that the improvement is obtained.

This algorithm has been successful in performance optimization of pipelined circuits [29]. Experiments with area

minimization are ongoing, but it is expected that good results will be obtained only when the latest combinational

optimization techniques, which use a larger set of observability don’t cares, are employed. In particular, those that

14



use a maximal observability don’t care set can exploit the signal dependencies exposed during peripheral retiming.

Retiming and resynthesis will be implemented in SIS after further investigation and experimentation.

Technology Mapping

The strategy of representing feedback lines by latches preserves the acyclic nature of the circuit representation

and allows the combinational technology mapping algorithms to be easily extended to sequential mapping [33]. The

same tree-covering algorithm [39] is used but the pattern matching procedure is extended to accommodate sequential

elements. The pattern matching relies no longer on just the network topology but also on the type of library element

and on the location of latch input and output pins. By choosing to treat the problem of selecting a clocking scheme

(single-phase synchronous, multi-phase synchronous or even asynchronous) and clocking parameters as a higher level

issue, the output of sequential technology mapping can be controlled by simply restricting the types of sequential

elements allowed in the technology library. This approach can handle complex latches which are either synchronous

or asynchronous, but not both (for example, synchronous latches with asynchronous set/reset) 3.

Implicit State Enumeration Techniques

Recently, methods for implicitly enumerating the states in a finite-state machine have been reported and can be

used to explore the state space in very large examples [10, 53]. Such techniques employ a breadth-first traversal of

sets of states of a machine. Beginning with an initial state set, all the states reachable in one transition from that set

are computed simultaneously, then all the states reachable in two transitions, etc. Efficient implementation of this

technique requires careful computation of the product of the transition relation (present-state/next-state relation) and

the current set of states. This can be done either by reducing the size of the resulting function during computation by

eliminating variables appropriately [53], or by using a divide and conquer approach [10]. Each function is efficiently

implemented and manipulated using BDDs [6].

These techniques are useful for generating sequential don’t care conditions. The reachable state set is computed

with implicit techniques; the complement of this set represents the unreachable states. These are don’t care conditions

expressed in terms of the registers in the circuit. In SIS the command extract seq dc extracts the unreachable states

and stores them as external don’t cares. Subsequent calls to full simplify (see Section 3.2.1) exploit these don’t cares.

Implicit state enumeration techniques are also useful for verification. The equivalence of two finite-state machines

(logic-level implementations) can be verified by computing the reachable states for the product machine. The two

machines may have different state encodings. At each iteration, the states reached are checked for equivalent output

functions. The verify fsm command in SIS has verified machines with more than 1068 states [53].

3.3 Signal Transition Graph Manipulations

The design input to SIS need not be a synchronous specification. An asynchronous specification can be given as a

signal transition graph. In this section, algorithms are outlined for the synthesis of hazard-free circuits under different

delay models from signal transition graphs.

If a signal transition graph is correct (live, safe, free choice and with a consistent labeling), then it can be

automatically synthesized if it satisfies another condition:

� complete state coding: whenever two markings have the same label, then they must enable the same set of output

transitions.

The synthesis is performed by exhaustive simulation of all reachable markings. This produces a state graph,

where each marking is associated with a state, and each edge, representing a transition firing, joins the corresponding

predecessor and successor markings. For example, in Figure 3(c) the state graph fragment corresponding to Figure 3(a)

is shown, where the state labeled 0100 corresponds to p1 being marked.

If the signal transition graph is correct and has complete state coding, then we can derive from the state graph an

implied value for each output signal in each state as follows. For every state s, for every output signal x, the implied

value of x in s is:

3Such latches cannot be represented by a combinational network feeding a latch element; the require some additional logic at the latch output.

This introduces cyclic dependency to the cost function, and the tree-covering can no longer be solved by a dynamic programming algorithm.
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� the value of x in the label of s if no transition for x is enabled in the marking corresponding to s. For example,

in state 0100, corresponding to p1 being marked, no transition for c is enabled, so the implied value of c is 0.

� otherwise, the complement of that value. For example, in state 0100 transition b

�

2 is enabled, so the implied

value of b in 0100 is 0.

A combinational function, computing the implied value for each input label (minterm) obviously implements the

required behavior of each output signal. This straightforward implementation, though, can still exhibit hazards (i.e.

temporary deviations from the expected values, due to the non-zero delays of gates and wires in a combinational

circuit). SIS provides an implementation of the algorithms described in [32] and [20] to produce hazard-free circuits

under the unbounded gate-delay model and the bounded wire-delay model respectively.

The commands that operate on a signal transition graph and produce an asynchronous circuit implementation of it

can be roughly classified as analysis and synthesis commands.

Analysis commands

� astg current prints some information on the current signal transition graph.

� astg marking prints the current marking, if any, of the signal transition graph (it is useful if the marking was

obtained automatically by SIS , since this is an expensive computation).

� astg print sg prints the state graph obtained during the synthesis process (mainly useful for debugging purposes).

� astg print stat prints a brief summary of the signal transition graph and state graph characteristics.

Synthesis commands

� astg syn synthesizes a hazard-free circuit using the unbounded gate-delay model. It eliminates hazards from the

initial circuit, produced from the implied values as described above, by adding redundant gates and/or adding

input connections to some gates, as described in [32]. This command (as well as astg to f) can compute the

initial marking if it is not explicitly given.

� astg to f synthesizes a circuit (like astg syn), but in addition it analyzes and stores its potential hazards using the

bounded wire-delay model4. Those hazards can be eliminated, after a constrained logic synthesis and technology

mapping, by the astg slow command.

� astg slow inserts delays, as described in [20], in order to produce a hazard-free circuit in a specific implementation

technology. Note that this step can take advantage of the knowledge about minimum delays in the environment5.

These delays can either be given as a single lower bound, with the -d option, or in a file, with the -f option.

Each line in this environment delay file contains a pair of signals and a pair of numbers, and represents the

minimum guaranteed lower bound on the delay between a transition on the first signal and a rising/falling

transition respectively on the second signal.

In order to do worst-case hazard analysis, astg slow also provides a rudimentary mechanism to describe gates

with upper and lower bounds on the delay, using the -m option. This option specifies a multiplicative factor

to obtain the minimum delay of each gate, given its maximum delay as specified by the gate library used for

technology mapping.

Note that the astg to f and astg slow commands require that only algebraic operations during logic synthesis in

order to guarantee hazard-free synthesis. Namely only the sweep, fx, gkx, gcx, resub, eliminate, decomp and

map commands can be used. Other commands such as simplify and full simplify may re-introduce hazards.

4Note that a circuit that does not have hazards with the unbounded gate delay model, where all wire delays are assumed to be zero, can exhibit

hazards with the bounded wire-delay model. The designer should use the delay model that best suits the underlying implementation technology

(see [7]).
5By default the environment is assumed to respond instantaneously, since this represents a pessimistic worst-case assumption for hazard analysis.
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TLU Synthesis

xl ao cube-packing on an infeasible network

xl k decomp apply Roth-Karp decomposition

xl split modified kernel extraction

xl imp apply different decomposition schemes and pick the best

xl absorb reduce infeasibility of the network

xl cover use binate covering to minimize number of blocks

xl partition minimize number of blocks by collapsing nodes into immediate fanouts

xl part coll initial mapping and partial collapse on the network

xl merge identify function-pairs to be placed on the same CLB

xl decomp two cube-packing targeted for two-output CLB’s

xl rl reduce number of levels

xl nodevalue print infeasible nodes

MB Synthesis

act map block count minimization for act1 and act architectures

Table 1: PGA Synthesis Commands in SIS

� astg contract, given a specific output signal x for which logic needs to be synthesized, removes from the signal

transition graph all the signals that are not directly required as inputs of the logic implementing x. Note that

contraction is guaranteed to yield a contracted signal transition graph with complete state coding only if the

original signal transition graph was a marked graph.

� astg lockgraph, given a correct signal transition graph without complete state coding, uses the algorithm

described in [56] to produce a signal transition graph with less concurrency but complete state coding (so that it

can be synthesized). Note that this technique works successfully only for marked graphs.

� astg persist ensures that the signal transition graph is persistent, i.e. no signal that enables a transition can

change value before that transition has fired (this property ensures a somewhat simpler implementation, at the

cost of a loss in concurrency). Note that this command works successfully only for marked graphs.

� astg to stg produces a state transition graph representation that describes a behavior equivalent to the signal

transition graph. It can be used, for example, to compare a synchronous and an asynchronous implementation

of (roughly) the same specification.

3.4 Logic Synthesis for Programmable Gate Arrays (PGA’s)

Synthesizing circuits targeted for particular PGA architectures requires new architecture-specific algorithms. A

number of these have been implemented in latter versions of MISII, and are being improved and enhanced in SIS. These

algorithms are described briefly in this section. A summary of the commands in SIS for PGA synthesis are given in

Table 1.

The basic PGA architectures share a common feature: repeated arrays of identical logic blocks. A logic block (or

basic block) is a versatile configuration of logic elements that can be programmed by the user. There are two main

categories of block structures, namely Table-Look-Up (TLU) and Multiplexor-Based (MB); the resulting architectures

are called the TLU and the MB architectures respectively. A basic block of a TLU architecture (also called configurable

logic block or CLB) implements any function having up to m inputs, m � 2. For a given TLU architecture, m is a

fixed number. A typical example is the Xilinx architecture [18], in which m = 5. In MB architectures, the basic block

is a configuration of multiplexors [13]. In SIS, combinational circuits can be synthesized for both these architectures.

Area minimization for both architectures and delay minimization for TLU architectures are supported. We are working

on extending the capabilities to handle sequential circuits.
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The algorithms and the corresponding commands that implement them in SIS are described next. For complete

details of the algorithms, the reader may refer to [34, 35, 36].

3.4.1 Synthesis for TLU architectures

If a function has at most m inputs, we know it can be realized with one block. We call such a function m-feasible.

Otherwise, it is m-infeasible. A network is m-feasible if the function at each node of the network is m-feasible. Let

us first address the problem of minimizing the number of basic blocks used to implement a network. We assume that

the technology-independent optimizations have been already applied on the given network description.

In order to realize an infeasible network using the basic blocks, we have to first make infeasible nodes feasible.

After obtaining a feasible network, we have to minimize the number of blocks used. These two subproblems are

described next.

Making an infeasible node feasible

Decomposition is a way of obtaining smaller nodes from a large node. We use decomposition to obtain a set of

m-feasible nodes for an infeasible node function. The following is a summary of various decomposition commands

for TLU architectures that are in SIS:
xl ao cube-packing on an infeasible network

xl k decomp apply Roth-Karp decomposition

xl split modified kernel extraction

xl imp apply different decomposition schemes and pick the best
Cube-packing [14] used in xl ao treats the cubes (product-terms) of the function as items. The size of each cube

is the number of literals in it. Each logic block is a bin with capacity m. The decomposition problem can then be seen

as that of packing the cubes into a minimum number of bins.

xl k decomp uses classical Roth-Karp decomposition [38] to decompose an infeasible node intom-feasible nodes.

A set X (called the bound set) of cardinality m is chosen from the inputs of the infeasible function f . The rest of the

inputs form the free set Y . Then the Roth-Karp technique decomposes f as follows:

f(X;Y ) = g(�1(X); �2(X); : : : ; �

p

(X); Y ) (1)

where �1; �2; : : : ; �p are m-feasible functions. If p + jY j > m, g is infeasible and needs to be decomposed further.

To get the best possible decomposition, all possible choices of bound sets have to be tried. With options -e and -f,

all bound sets of a node are tried and the one resulting in the minimum number of nodes is selected.

xl split extracts kernels from an infeasible node. This procedure is recursively applied on the kernel and the node,

until either they become m-feasible or no more kernels can be extracted, in which case a simple and-or decomposition

is performed.

xl imp tries to get the best possible decomposition for the network. It applies a set of decomposition techniques

on each infeasible node n of the network. These techniques include cube-packing on the sum-of-products form of n,

cube-packing on the factored form of n, Roth-Karp decomposition, and kernel extraction. The best decomposition

result - the one which has a minimum number of m-feasible nodes - is selected.

One command which does not necessarily generate anm-feasible network, but reduces the infeasibilityof a network

is xl absorb. Infeasibility of a network is measured as the sum of the number of fanins of the infeasible nodes. The

command xl absorb moves the fanins of the infeasible nodes to feasible nodes so as to decrease the infeasibility of the

network. Roth-Karp decomposition is used to determine if a fanin of a node could be made to fan in to another node.

Block Count Minimization

After decomposition, an m-feasible network is obtained and may be mapped directly onto the basic blocks.

However, it may be possible to collapse some nodes into their fanouts while retaining feasibility. The following

commands in SIS do the block count minimization:
xl cover use binate covering

xl partition collapse nodes into immediate fanouts
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xl cover enumerates all sets of nodes which can be realized as a single block. Each such set is called a supernode.

The enumeration is done using the maximum flow algorithm repeatedly. A smallest subset S of supernodes that satisfy

the following three constraints is selected:

1. each node of the network should be included in at least one supernode in S,

2. each input to a supernode in S should either be an output of another supernode in S, or an external input to the

network, and

3. each output of the network should be an output of some supernode in S.

This is a binate covering formulation [39]. Mathony’s algorithm [30] is used to solve this formulation. For large

networks, this algorithm is computationally intensive and several heuristics for fast approximate solutions are used

(option -h).

xl partition tries to reduce the number of nodes by collapsing nodes into their immediate fanouts. It also takes into

account extra nets created. It collapses a node into its fanout only if the resulting fanout is m-feasible. It associates a

cost with each (node, fanout) pair which reflects the extra nets created if node is collapsed into the fanout. It then selects

pairs with lowest costs and collapses them. With-t option, a node is considered for collapsing into all the fanouts, and

is collapsed if all the fanouts remain m-feasible after collapsing. The node is then deleted from the network. Further

optimization results by considering the technique of moving of fanins (using -m option). This technique is applied as

follows. Before considering the collapse of node n into its fanout(s), we check if any fanin F of n could be moved

to G - another fanin of n. This increases the chances of n being collapsed into its fanout(s). Moreover, it may later

enable some other fanin of n to be collapsed into n.

Overall Algorithm

We first apply technology-independent optimization on the given network. Each infeasible node of this network is

mapped as follows. We first decompose it into an m-feasible subnetwork using the techniques discussed above. The

block count minimization is then applied on this subnetwork. Applying decomposition and block count minimization

node-by-node gives better results than first applying decomposition on the entire network and then using block count

minimization. The reason is that the exact block count minimization on the full network is computationally intensive,

and hence is run only in heuristic mode.

The node-by-node mapping paradigm does not exploit structural relationship between the nodes of the network.

This is achieved in command xl part coll (for partial collapse) by collapsing each node into its fanouts, remapping

the fanouts, and computing the gain from this collapse. A greedy approach is employed - the collapse is accepted if it

results in a gain.

Next we apply a heuristic block count minimization on the entire network (for example xl cover -h 3).

For good results, the following script may be used:

xl part coll -m -g 2

xl coll ck

xl partition -m

simplify

xl imp

xl partition -t

xl cover -e 30 -u 200

xl coll ck -k

For very fast results, the following script may be used:

xl ao

xl partition -tm

xl coll ck collapses a feasible network if the number of primary inputs is small (specified by -c option), applies

Roth-Karp decomposition and cofactoring schemes, picks the best result and compares with the original network
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(before collapsing). If the number of nodes is smaller, accepts the better decomposition. It does nothing if m = 2. If

-k option is specified, Roth-Karp decomposition is not applied; only cofactoring is used.

Note that in all the commands, the default value of m is 5. It may be changed by specifying -n option to each

command. Intermediate points in the quality-time trade-off curve may be obtained by suitably modifying the scripts.

One useful command not described above is xl nodevalue -v support. It prints nodes that have at least support

fanins. This command is used to make sure that a feasible network has indeed been obtained. For example, if m = 5,

use xl nodevalue -v 6.

Handling Two Outputs

There are special features in some TLU architectures. For example, in the Xilinx architecture, a CLB may

implement one function of at most 5 inputs, or two functions if both of them have at most 4 inputs each and the total

number of inputs is at most 5 (in which case they are called mergeable). The problem is to minimize the number of

two-output CLB’s used for a given circuit description. SIS has two special commands for handling two-output CLB’s:

xl merge identify function-pairs to be placed on the same block

xl decomp two cube-packing targeted for two-output CLB’s
The approach currently followed in SIS is to minimize first the number of single-output blocks using the script(s)

described above and then use xl merge as a post-processing step to place maximum number of mergeable function-

pairs in one CLB each. This reduces to the following problem: “Given a feasible network, find the largest set of

disjoint pairs of mergeable functions.” We have shown that this problem can be formulated as the maximum cardinality

matching problem in a related graph. An exact solution can be generated using lindo, an integer linear programming

package. If lindo is not found in the path, xl merge switches to a heuristic to solve the matching problem.

A different approach that sometimes gives better results is the following. First obtain a 4-feasible network (by

running any one of the above scripts with -n 4) and then use xl merge without -F option. Since there are no nodes

with 5 inputs, all nodes can potentially pair with other nodes. As a result the number of matches is higher. When

-F option is not used, xl merge first finds maximum number of mergeable function pairs and then applies block

minimization on the subnetwork consisting of unmatched nodes of the network. This sometimes results in further

savings. We recommend that the user should use scripts for both 4-feasible and 5-feasible, apply xl merge and pick

the network that uses lower number of CLB’s.

The command xl decomp two does decomposition of the network targeted for two-output CLB’s. It is a modifica-

tion of the cube-packing approach. However, it does not guarantee a feasible network; other decomposition commands

should be run afterwards to ensure feasibility.

Timing Optimization

xl rl performs delay optimizations during logic synthesis. Given a feasible network (preferably generated by

speed up), xl rl reduces the number of levels of TLU blocks used in the network. Then any block count minimization

command (e.g. xl cover, xl partition) can be applied to reduce the number of blocks without increasing the number

of levels. The details of the complete algorithm may be found in [36].

3.4.2 Synthesis for MB architectures

We have implemented synthesis algorithms for Actel’s act1 architecture (Figure 9). The command is called act map.

The architecture act (that is, act1 with the OR gate removed) is also supported. No library needs to be read.

The outline of the algorithm [34] is as follows: first, for each node of the network a BDD (ordered or unordered) is

constructed. The basic block of the architecture is represented with pattern graphs. The problem of covering the BDD

with minimum number of pattern graphs is solved by first decomposing the BDD into trees and then mapping each

tree onto the pattern-graphs using a dynamic programming algorithm. The overall algorithm is very similar to the one

for TLU architecture. After initial mapping, an iterative improvement phase of partial collapse, decomposition and

quick phase is entered. Quick phase decides if it is better to implement a node in the complement form. The user may

specify number of iterations, limits on number of fanins of nodes for collapsing or decomposition. A bdnet-like file

may be generated in which case the mapped network consists of nodes that are implemented by one basic block each.
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Figure 9: Two multiplexor-based architectures

3.5 Summary of SIS

Some of the new commands in SIS and their functions are summarized in Table 2. Currently SIS is being exercised

on a number of standard and industrial examples, and being tested at various academic and industrial locations. The

algorithms, particularly simplification and verification, are being run through large examples to test their robustness in

terms of CPU time and memory usage.

New techniques are being explored for overcoming current limitations in the size of the circuits that can be

manipulated. One direction for improvement is BDD ordering. Since the ordering of variables for constructing a BDD

has a direct effect on the size of the BDD, with improved algorithms for determining the variable ordering, the size of

the BDDs will decrease allowing larger circuits to be synthesized with these techniques.

The sequential technology mapping algorithm supports both synchronous and asynchronous latches, but not

synchronous latches with asynchronous signals (e.g. set, reset). These latches cannot be represented by a combinational

network feeding a latch element; some additional logic is required at the latch output. This introduces a cyclic

dependency to the cost function, and the tree-covering can no longer be solved by a dynamic programming algorithm.

Solutions to this problem are under investigation. One possibility is to tag every primary input and output node as

either synchronous or asynchronous. Then, a latch with asynchronous set/reset signals can be represented as a latch

with only synchronous set/reset signals, and the mapper distinguishes between the two by the types of input pins.

A project is underway to store an un-encoded state machine in an MDD representation (multiple-valued decision

diagram) [49] rather than the cumbersome STG representation; state assignment algorithms that work from multi-level

logic descriptions represented as MDDs are being explored. Also under investigation are techniques for sequential test

pattern generation. While the BLIF format allows a hierarchical net-list to be given, currently the hierarchy is flattened

to a single sequential circuit in SIS. This limitation is being addressed in the development of a hierarchical version of

SIS.

4 Part II: Using the SIS Design Environment

4.1 Synchronous Synthesis Example

The synthesis of a sequential circuit using SIS is best illustrated with an example. The example chosen is mark1,

which is in the MCNC benchmark set [26]. The specification is given in the KISS format (part of a smaller example in

KISS is embedded in the BLIF specification of Figure 2).

sis> read_kiss mark1.kiss2

mark1.kiss2 pi= 5 po=16 nodes= 0 latches= 0

lits(sop)= 0 lits(fac)= 0 #states(STG)= 16
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STG Manipulation

one hot quick state assignment using one hot encoding

state assign find an optimal binary code for each state and create a corresponding network

state minimize minimize the number of states by merging compatible states

stg cover verify that the STG behavior contains the logic behavior

stg extract extract an STG from a logic implementation

Combinational Optimization

full simplify simplify the two-level function at each node using external, satisfiability, and observability don’t cares

fx extract common single-cube and double-cube divisors

red removal remove combinational redundancies

reduce depth improve performance by selectively reducing the circuit depth

Sequential Optimization

randr optimize using combined retiming and resynthesis

retime move the registers for minimum cycle or minimum number of registers

ASTG Analysis

astg current print ASTG information

astg marking print initial marking

astg print sg print state graph (after synthesis)

astg print stat print other ASTG information

ASTG Synthesis

astg syn synthesize hazard-free implementation with unbounded gate-delay

astg to f synthesize and do hazard analysis with bounded wire-delay

astg slow remove hazards (after mapping) with bounded wire-delay

astg contract reduce the ASTG to the signals required for a single output

astg lockgraph ensure complete state coding (marked graph only)

astg persist ensure persistency (marked graph only)

astg to stg produce state transition graph equivalent to ASTG

Miscellaneous

atpg test pattern generation on combinational logic (assumes a scan design)

extract seq dc extract unreachable states and store as external don’t cares

verify fsm verify the equivalence of two state machines using implicit state enumeration techniques

Table 2: Partial List of New SIS commands
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Some statistics are given: the name of the circuit, the number of primary inputs and outputs, the number of nodes

in the multi-level logic implementation, the number of latches, the number of literals in sum-of-product and factored

form, and the number of states in the STG. The number of literals is the number of variables in true and complemented

form that appear in the Boolean functions for all nodes. The number of literals in factored form is roughly equal to

the number of transistor pairs that would be required for a static CMOS implementation. Since only the STG data

structure is present, the only statistics reported are number of inputs and outputs and the number of states in the STG.

State minimization is performed on the circuit with the STAMINA program

sis> state_minimize stamina

Running stamina, written by June Rho, University of Colorado at Boulder

Number of states in original machine : 16

Number of states in minimized machine : 12

mark1.kiss2 pi= 5 po=16 nodes= 0 latches= 0

lits(sop)= 0 lits(fac)= 0 #states(STG)= 12

and the number of states in the STG is reduced from 16 to 12.

State assignment determines binary codes for each state and substitutes these codes for the symbolic states, creating

a logic-level implementation.

sis> state_assign jedi

mark1.kiss2 pi= 5 po=16 nodes= 20 latches= 4

lits(sop)= 195 lits(fac)= 144 #states(STG)= 12

The JEDI state assignment program targets a multi-level implementation, The number of latches reflects the number of

encoding bits used by the state assignment program. There are four unused state codes; these will later be extracted

and used as don’t care conditions during the optimization.

Next the standard script from MISII is called, which iteratively extracts common cubes and factors, resubstitutes

them in the node functions, and collapses nodes whose literal-count savings is below a threshold. The result is a circuit

with a significant improvement in the number of literals.

sis> source script

mark1.kiss2 pi= 5 po=16 nodes= 16 latches= 4

lits(sop)= 91 lits(fac)= 81 #states(STG)= 12

No further improvement can be obtained by subsequent invocations of the standard MISII script. The powerful

node simplification procedure is called to minimize the Boolean functions at each node using a large don’t care set,

which includes both ODC’s and SDC’s.

sis> full_simplify

mark1.kiss2 pi= 5 po=16 nodes= 16 latches= 4

lits(sop)= 91 lits(fac)= 80 #states(STG)= 12

In this case, the improvement is insignificant, but further improvements can be obtained by running the simplifi-

cation algorithm with sequential don’t cares. These don’t cares are unreachable states computed using implicit state

enumeration techniques.

sis> extract_seq_dc

number of latches = 4 depth = 6 states visited = 12
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During this process, 12 states are visited in breadth-first order, and the remaining 4 are stored as don’t care conditions.

These are exploited by full simplify.

sis> full_simplify

mark1.kiss2 pi= 5 po=16 nodes= 16 latches= 4

lits(sop)= 79 lits(fac)= 70 #states(STG)= 12

The series of commands executed above demonstrate the improvements that the full simplify algorithmwith sequential

don’t cares obtains over the simplify algorithm in the MISII standard script. However, our recommendation is to use

a new script, script.rugged instead of the MISII standard script. The new script extracts factors faster using fx, and

hence will quickly reduce the size of large examples. Initially it uses the faster but less powerful MISII minimization;

full simplify is used later in the script for powerful node minimization. For the mark1 example, a better result than

the one shown above can be obtained automatically by invoking script.rugged. The following commands are applied

to mark1 after state assignment.

sis> extract_seq_dc

sis> source script.rugged

mark1.kiss2 pi= 5 po=16 nodes= 17 latches= 4

lits(sop)= 70 lits(fac)= 66 #states(STG)= 12

The retiming algorithm can be run to improve the cycle time of the circuit.

sis> retime -n

Lower bound on the cycle time = 3.40

Retiming will minimize the cycle time

RETIME: Initial clk = 13.60, Desired clk = 3.40

initial cycle delay = 13.60

initial number of registers = 4

initial logic cost = 78.00

initial register cost = 4.00

Failed at 3.40 : Now attempting 8.50

Failed at 8.50 : Now attempting 11.05

Failed at 11.05 : Now attempting 12.32

Failed at 12.32 : Now attempting 12.96

Failed at 12.96 : Now attempting 13.28

Failed at 13.28 : Now attempting 13.44

Success at 13.44, Delay is 13.40

Success: Now attempting 13.34

Quitting binary search at 13.34

final cycle delay = 13.40

final number of registers = 8

final logic cost = 78.00

final register cost = 8.00

RETIME: Final cycle time achieved = 13.40

mark1.kiss2 pi= 5 po= 16 nodes= 17 latches= 8

lits(sop)= 70 lits(fac)= 66

The result is that the cycle time decreases from 13.6 to 13.4, while the number of latches increases from 4 to 8. In

this example, the increase in latches outweighs the small decrease in cycle time. However, in many cases only a small
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increase in the number of latches is required for a significant improvement in cycle time. Moreover, the user can

control the tradeoff between latch count and cycle time.

Finally, a library of gates including latches is read in.

sis> rlib lib2.genlib

lib2.genlib is based on a standard-cell design style and is from the MCNC benchmark set [26]. It has been augmented

with latches. The circuit is mapped into a net-list of gates and latches in this target technology.

sis> map -s

total gate area: 104864.00

maximum arrival time: (19.75,20.35)

mark1.kiss2 pi= 5 po=16 nodes= 50 latches= 9

lits(sop)= 120 lits(fac)= 105

The number of literals changes as the mapping routine restructures the network to fit the target technology. The gate

area is based on standard-cell grid count, and the arrival time is computed with static timing analysis, using the delays

on the gates given in the library. The two numbers represent the maximum rise and fall delays.

A new script, script.delay, is provided with SIS and targets performance optimization. It should be used after area

optimization is complete. If it is invoked for mark1 after the rugged script is used, the result is as follows:

total gate area: 116000.00

maximum arrival time: ( 8.08, 8.19)

This is compared with the best results for area optimization, which, in the example above, is the circuit obtained after

the last application of script.rugged:

total gate area: 79344.00

maximum arrival time: (15.82,16.33)

The use of script.delay resulted in a 50% improvement in speed for a 46% penalty in area. Again, the user can control

the trade-off between area and delay by varying the parameters supplied to the various algorithms.

4.2 Asynchronous Synthesis Example

Let us examine a simple example of a signal transition graph from [8], shown in Figure 10. It is a marked graph (no

place has multiple predecessors or successors), and no initial marking is given.

.model two_phase_fifo

.inputs Ri Ao D

.outputs Ro Ai L

.graph

D- L-/1 Ro-

L-/1 Ai-

Ai- Ri+

Ri+ L+/1

Ro- Ao-

Ao- L+/1

L+/1 D+

D+ L-/2 Ro+

L-/2 Ai+

Ai+ Ri-

Ri- L+/2
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Figure 10: A Signal Transition Graph and its State Graph
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.end

Suppose that the signal transition graph is contained in a file called chu150.g. The following SIS session shows

an example of how to use the main commands that use the unbounded gate-delay model.

sis> read_astg chu150.g

sis> astg_syn

sis> print

Ai_next = Ai_ D + Ai_ {L} + D {L}’

{L} = Ao D Ri’ + Ao’ D’ Ri

{Ro} = D

{Ai} = Ai_

sis> print_latch

input: {Ai_next} output: Ai_ init val: 1 cur val: 1 type: as control: none

sis> print_io

primary inputs: Ri Ao D Ai_

primary outputs: {Ai_next} {Ro} {Ai} {L}

sis> astg_current

two_phase_fifo

File: chu150.g (modified)

Pure: Y Place-simple: Y

Connected: Y Strongly Connected: Y

Free Choice: Y Marked Graph: Y State Machine: N

SM components: 4

MG components: 1

sis> astg_marking

{<L+/2,D->}

sis> astg_print_stat

File Name = chu150.g

Total Number of Signals = 6 (I = 3/O = 3)

Initial State = state 55 : (Ri=0 Ao=1 D=1 Ro=1 Ai=1 L=1 )

enabled transitions : [D- ]
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Total Number of States = 26

sis>

astg syn automatically computes an initial marking, printed with astg marking, that corresponds to the (implicit)

place between L

+

2 and D� being marked, and hence to the state labeled 011111 in the state graph.

Note that the function of signal Ai depends on the signal itself. In order to break the asynchronous feedback loop,

an asynchronous latch is inserted between primary output Ai next and primary input Ai . So each output signal that is

part of an asynchronous feedback loop is represented inside SIS by three distinct signals:

� a “fictitious” primary input (distinguished by “ ”),

� a “fictitious” primary output (distinguished by “ next”),

� a “real” primary output.

All three signals, though, are actually directly connected to each other, since an asynchronous latch represents only a

delay element used to break the loop. This representation trick is required to describe an asynchronous circuit within

a framework better suited for synchronous systems.

Signals L and Ro, on the other hand, are purely combinational, hence they are just represented as a combinational

logic block.

Now we can examine a similar session using the bounded wire-delay model commands.

sis> read_astg chu150.g

sis> astg_to_f

sis> print

{Ro_next} = D

[15] = Ai_ D + Ai_ L_ + D L_’

{Ai} = Ai_

[17] = Ao D Ri’ + Ao’ D’ Ri

{L} = L_

sis> print_latch

input: {[15]} output: Ai_ init val: 1 cur val: 3 type: as control: none

input: {[17]} output: L_ init val: 1 cur val: 3 type: as control: none

sis> print_io

primary inputs: Ri Ao D Ai_ L_

primary outputs: {Ro_next} {Ai} {L} {[15]} {[17]}

sis> read_library asynch.genlib

sis> map -W

sis> print_latch

input: {[587]} output: Ai_ init val: 1 cur val: 3 type: as control: none

input: {[586]} output: L_ init val: 1 cur val: 3 type: as control: none

sis> print_io

primary inputs: Ri Ao D Ai_ L_

primary outputs: {Ro_next} {Ai} {L} {[587]} {[586]}

sis> print_gate -s

ao33:combinational : 1 (area=64.00)

delay:asynch : 1 (area=0.00)

inv:combinational : 3 (area=16.00)

nor2:combinational : 2 (area=24.00)

sr_nor:asynch : 1 (area=40.00)

Total: 8 gates, 200.00 area

sis> print_delay -ap 1 o()

... using library delay model
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Figure 11: An implementation of Figure 10

{[587]} : arrival=( 4.60 4.60)

sis> astg_slow -d .8

Slowing down D (fails by 0.60)

sis> print_gate -s

ao33:combinational : 1 (area=64.00)

delay:asynch : 1 (area=0.00)

inv:combinational : 5 (area=16.00)

nor2:combinational : 2 (area=24.00)

sr_nor:asynch : 1 (area=40.00)

Total: 10 gates, 232.00 area

sis> print_delay -ap 1 o()

... using library delay model

{[587]} : arrival=( 7.00 7.00)

sis>

The synthesized circuit is shown in Figure 11, where the delay element symbol denotes an asynchronous latch that

is implemented by a simple wire. The delays reported by print delay are measured within the combinational logic

only, so the longest path of 7.0 units at the end is between nodes D and [586].

Note that in the bounded wire-delay case asynchronous latches are used to implement every signal (not just self-

dependent ones), in order to be able to trace delays across the network. The only exception is signal Ro, whose function

is just a wire. The circuit after technology mapping has a hazard due to the early arrival of signal D if we use a delay

model where the minimum delay across a gate is 80% of its maximum delay (as specified by -d .8). So astg slow

inserts a pair of inverters after D, thus increasing both the area and the delay of the circuit in order to eliminate all

hazards.

If on the other hand, using our knowledge of the environment behavior, we could assume that the minimum reaction

time of the environment is 2 time units (as specified by -t 2), then the circuit would be hazard-free without the need to

insert any delay:

sis> read_astg chu150.g

sis> astg_to_f

sis> read_library asynch.genlib

sis> map -W

sis> astg_slow -d .8 -t 2

sis> print_gate -s

ao33:combinational : 1 (area=64.00)

delay:asynch : 1 (area=0.00)

inv:combinational : 3 (area=16.00)

nor2:combinational : 2 (area=24.00)
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sr_nor:asynch : 1 (area=40.00)

Total: 10 gates, 200.00 area

sis> print_delay -ap 1 o()

... using library delay model

{[587]} : arrival=( 4.60 4.60)

sis>

5 Conclusions

SIS is a comprehensive system for synthesizing and optimizing sequential circuits. It is easily interfaced with other

design tools through widely used interchange formats, and integrates a number of state-of-the-art algorithms for

synthesis, optimization, testing, and verification. Several scripts are provided to automate the synthesis process and to

serve as a starting point for experimentation with the parameters of each algorithm. SIS targets specifically a sequential

circuit design methodology and thereby can exploit properties specific to sequential circuits.
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Appendix A : Berkeley Logic Interchange Format (BLIF)

The goal of BLIF is to describe a logic-level hierarchical circuit in textual form. A circuit is an arbitrary combinational

or sequential network of logic functions. A circuit can be viewed as a directed graph of combinational logic nodes and

sequential logic elements. Each node has a two-level, single-output logic function associated with it. Each feedback

loop must contain at least one latch. Each net (or signal) has only a single driver, and either the signal or the gate

which drives the signal can be named without ambiguity.

In the following, angle-brackets surround nonterminals, and square-brackets surround optional constructs.

1 Models

A model is a flattened hierarchical circuit. A BLIF file can contain many models and references to models described in
other BLIF files. A model is declared as follows:

.model <decl-model-name>

.inputs <decl-input-list>

.outputs <decl-output-list>

.clock <decl-clock-list>
<command>

.

.

.
<command>
.end

decl-model-name is a string giving the name of the model.

decl-input-list is a white-space-separated list of strings (terminated by the end of the line) giving the formal input

terminals for the model being declared. If this is the first or only model, then these signals can be identified as

the primary inputs of the circuit. Multiple .inputs lines are allowed, and the lists of inputs are concatenated.

decl-output-list is a white-space-separated list of strings (terminated by the end of the line) giving the formal output

terminals for the model being declared. If this is the first or only model, then these signals can be identified as

the primary outputs of the circuit. Multiple .outputs lines are allowed, and the lists of outputs are concatenated.

decl-clock-list is a white-space-separated list of strings (terminated by the end of the line) giving the clocks for the

model being declared. Multiple .clock lines are allowed, and the lists of clocks are concatenated.

command is one of:
<logic-gate> <generic-latch> <library-gate>
<model-reference> <subfile-reference> <fsm-description>
<clock-constraint> <delay-constraint>

Each command is described in the following sections.

The BLIF parser allows the .model, .inputs, .outputs, .clock and .end statements to be optional. If .model is not

specified, the decl-model-name is assigned the name of the BLIF file being read. It is an error to use the same string for

decl-model-name in more than one model. If .inputs is not specified, it can be inferred from the signals which are not

the outputs of any other logic block. Similarly, .outputs can be inferred from the signals which are not the inputs to

any other blocks. If any .inputs or .outputs are given, no inference is made; a node that is not an output and does not

fanout produces a warning message.

If .clock is not specified (e.g., for purely combinational circuits) there are no clocks. .end is implied at end of file

or upon encountering another .model.

Important: the first model encountered in the main BLIF file is the one returned to the user. The only .clock,

clock-constraint, and timing-constraint constructs retained are the ones in the first model. All subsequent models can

be incorporated into the first model using the model-reference construct.

Anywhere in the file a ‘#’ (hash) begins a comment that extends to the end of the current line. Note that the

character ‘#’ cannot be used in any signal names. A ‘\’ (backslash) as the last character of a non-comment line

indicates concatenation of the subsequent line to the current line. No whitespace should follow the ‘\’.
Example:
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.model simple

.inputs a b

.outputs c

.names a b c # .names described later
11 1
.end

# unnamed model
.names a b \
c # ‘\’ here only to demonstrate its use
11 1

Both models “simple” and the unnamed model describe the same circuit.

2 Logic Gates

A logic-gate associates a logic function with a signal in the model, which can be used as an input to other logic
functions. A logic-gate is declared as follows:

.names <in-1> <in-2> ... <in-n> <output>
<single-output-cover>

output is a string giving the name of the gate being defined.

in-1, in-2, ... in-n are strings giving the names of the inputs to the logic gate being defined.

single-output-cover is, formally, an n-input, 1-output PLA description of the logic function corresponding to the logic

gate. f0, 1, –g is used in the n-bit wide “input plane” and f0, 1g is used in the 1-bit wide “output plane”. The

ON-set is specified with 1’s in the “output plane,” and the OFF-set is specified with 0’s in the “output plane.” The

DC-set is specified for primary output nodes only, by using the construct .exdc.

A sample logic-gate with its single-output-cover:

.names v3 v6 j u78 v13.15
1--0 1
-1-1 1
0-11 1

In a given row of the single-output-cover, “1” means the input is used in uncomplemented form, “0” means the

input is complemented, and “–” means not used. Elements of a row are ANDed together, and then all rows are ORed.

As a result, if the last column (the “output plane”) of the single-output-cover is all 1’s, the first n columns (the

“input plane”) of the single-output-cover can be viewed as the truth table for the logic gate named by the string output.

The order of the inputs in the single-output-cover is the same as the order of the strings in-1, in-2, ..., in-n in the .names

line. A space between the columns of the “input plane” and the “output plane” is required.
The translation of the above sample logic-gate into a sum-of-products notation would be as follows:

v13.15 = (v3 u78’) + (v6 u78) + (v3’ j u78)

To assign the constant “0” to some logic gate j, use the following construct:

.names j

To assign the constant “1”, use the following:

.names j
1

The string output can be used as the input to another logic-gate before the logic-gate for output is itself defined.

For a more complete description of the PLA input format, see espresso(5).
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3 External Don’t Cares

External don’t cares are specified as a separate network within a model, and are specified at the end of the model

specification. Each external don’t care function, which is specified by a .names construct, must be associated with a

primary output of the main model and specified as a function of the primary inputs of the main model (hierarchical

specification of external don’t cares is currently not supported).
The external don’t cares are specified as follows:

.exdc

.names <in-1> <in-2> ... <in-n> <output>
<single-output-cover>

_exdc indicates that the following .names constructs apply to the external don’t care network.

output is a string giving the name of the primary output for which the conditions are don’t cares.

in-1, in-2, ... in-n are strings giving the names of the primary inputs which the don’t care conditions are expressed in

terms of.

single-output-cover is an n-input, 1-output PLA description of the logic function corresponding to the don’t care

conditions for the output.

The following is an example circuit with external don’t cares:

.model a

.inputs x y

.outputs j

.subckt b x=x y=y j=j

.exdc

.names x j
1 1
.end

.model b

.inputs x y

.outputs j

.names x y j
11 1
.end

The translation of the above example into a sum-of-products notation would be as follows:

j = x * y;
external d.c. for j = x;

4 Flip flops and latches

A generic-latch is used to create a delay element in a model. It represents one bit of memory or state information.

The generic-latch construct can be used to create any type of latch or flip-flop (see also the library-gate section). A

generic-latch is declared as follows:

.latch <input> <output> [<type> <control>] [<init-val>]

input is the data input to the latch.

output is the output of the latch.

type is one of ffe, re, ah, al, asg, which correspond to “falling edge,” “rising edge,” “active high,” “active low,” or

“asynchronous.”

control is the clocking signal for the latch. It can be a .clock of the model, the output of any function in the model, or

the word “NIL” for no clock.

35



init-val is the initial state of the latch, which can be one of f0, 1, 2, 3g. “2” stands for “don’t care” and “3” is

“unknown.” Unspecified, it is assumed “3.”

If a latch does not have a controlling clock specified, it is assumed that it is actually controlled by a single global

clock. The behavior of this global clock may be interpreted differently by the various algorithms that may manipulate

the model after the model has been read in. Therefore, the user should be aware of these varying interpretations if

latches are specified with no controlling clocks.

Important: All feedback loops in a model must go through a generic-latch. Purely combinational-logic cycles

are not allowed.
Examples:

.inputs d # a clocked flip-flop

.output q

.clock c

.latch d q re c 0

.end

.inputs in # a very simple sequential circuit

.outputs out

.latch out in 0

.names in out
0 1
.end

5 Library Gates

A library-gate creates an instance of a technology-dependent logic gate and associates it with a node that represents

the output of the logic gate. The logic function of the gate and its known technology dependent delays, drives, etc. are

stored with the library-gate. A library-gate is one of the following:

.gate <name> <formal-actual-list>

.mlatch <name> <formal-actual-list> <control> [<init-val>]

name is the name of the .gate or .mlatch to instantiate. A gate or latch with this name must be present in the current

working library.

formal-actual-list is a mapping between the formal parameters of name (the terminals of the library-gate) and the

actual parameters of the current model (any signals in this model). The format for a formal-actual-list is a

white-space-separated sequence of assignment statements of the form:

formal1=actual1 formal2=actual2 ...

All of the formal parameters of name must be specified in the formal-actual-list and the single output of name

must be the last one in the list.

control is the clocking signal for the mlatch, which can be either a .clock of the model, the output of any function in

the model, or the word “NIL” for no clock.

init-val is the initial state of the mlatch, which can be one of f0, 1, 2, 3g. “2” stands for “don’t care” and “3” is

“unknown.” Unspecified, it is assumed “3.”

A .gate refers to a two-level representation of an arbitrary input, single output gate in a library. A .gate appears

under a technology-independent interpretation as if it were a single logic-gate.

A .mlatch refers to a latch (not necessarily a D flip flop) in a library. A .mlatch appears under a technology-

independent interpretation as if it were a single generic-latch and possibly a single logic-gate feeding the data input of

that generic-latch.
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.gates and .mlatches are used to describe circuits that have been implemented using a specific library of standard

logic functions and their technology-dependent properties. The library of library-gates must be read in before a BLIF

file containing .gate or .mlatch constructs is read in.
The string name refers to a particular gate or latch in the library. The names “nand2,” “inv,” and “jk rising edge”

in the following examples are descriptive names for gates in the library. The following BLIF description:

.inputs v1 v2

.outputs j

.gate nand2 A=v1 B=v2 O=x # given: formals of this gate are A, B, O

.gate inv A=x O=j # given: formals of this gate are A & O

.end

could also be specified in a technology-independent way (assuming “nand2” is a 2-input NAND gate and “inv” is an
INVERTER) as follows:

.inputs v1 v2

.outputs j

.names v1 v2 x
0- 1
-0 1
.names x j
0 1
.end

Similarly:

.inputs j kbar

.outputs out

.clock clk

.mlatch jk_rising_edge J=j K=k Q=q clk 1 # given: formals are J, K, Q

.names q out
0 1
.names kbar k
0 1
.end

could have been specified in a technology-independent way (assuming “jk rising edge” is a JK rising-edge-triggered
flip flop) as follows:

.inputs j kbar

.outputs out

.clock clk

.latch temp q re clk 1 # the .latch

.names j k q temp # the .names feeding the D input of the .latch
-01 1
1-0 1
.names q out
0 1
.names kbar k
0 1
.end

6 Model (subcircuit) references

A model-reference is used to insert the logic functions of one model into the body of another. It is defined as follows:

.subckt <model-name> <formal-actual-list>

model-name is a string giving the name of the model being inserted. It need not be previously defined in this file, but

should be defined somewhere in either this file, a .search file, or a master file that is .searching this file. (see

.search below)

formal-actual-list is a mapping between the formal terminals (the decl-input-list, decl-output-list, and decl-clock-list)

of the called model model-name and the actual parameters of the current model. The actual parameters may be

any signals in the current model. The format for a formal-actual-list is the same as its format in a library-gate.
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A .subckt construct can be viewed as creating a copy of the logic functions of the called model model-name,

including all of model-name’s generic-latches, in the calling model. The hierarchical nature of the BLIF description of

the model does not have to be preserved. Subcircuits can be nested, but cannot be self-referential or create a cyclic

dependency.

Unlike a library-gate, a model-reference is not limited to one output.

The formals need not be specified in the same order as they are defined in the decl-input-list, decl-output-list, or

decl-clock-list; elements of the lists can be intermingled in any order, provided the names are given correctly. Warning

messages are printed if elements of the decl-input-list or decl-clock-list are not driven by an actual parameter or if

elements of the decl-output-list do not fan out to an actual parameter. Elements of the decl-clock-list and decl-input-list

may be driven by any logic function of the calling model.
Example: rather than rewriting the entire BLIF description for a commonly used subcircuit several times, the

subcircuit can be described once and called as many times as necessary:

.model 4bitadder

.inputs A3 A2 A1 A0 B3 B2 B1 B0 CIN

.outputs COUT S3 S2 S1 S0

.subckt fulladder a=A0 b=B0 cin=CIN s=S0 cout=CARRY1

.subckt fulladder a=A3 b=B3 cin=CARRY3 s=S3 cout=COUT

.subckt fulladder b=B1 a=A1 cin=CARRY1 s=XX cout=CARRY2

.subckt fulladder a=JJ b=B2 cin=CARRY2 s=S2 cout=CARRY3
# for the sake of example,

.names XX S1 # formal output ‘s’ does not fanout to a primary output
1 1
.names A2 JJ # formal input ‘a’ does not fanin from a primary input
1 1
.end

.model fulladder

.inputs a b cin

.outputs s cout

.names a b k
10 1
01 1
.names k cin s
10 1
01 1
.names a b cin cout
11- 1
1-1 1
-11 1
.end

7 Subfile References

A subfile-reference is:

.search <file-name>

file-name gives the name of the file to search.

A subfile-reference directs the BLIF reader to read in and define all the models in file file-name. A subfile-reference

does not have to be inside of a .model. subfile-references can be nested.

Search files would usually be used to hold all the subcircuits referred to in model-references, while the master file

merely searches all the subfiles and instantiates all the subcircuits it needs.

A subfile-reference is not equivalent to including the body of subfile file-name in the current file. It does not

patch fragments of BLIF into the current file; it pauses reading the current file, reads file-name as an independent,

self-contained file, then returns to reading the current file.

The first .model in the master file is always the one returned to the user, regardless of any subfile-references than

may precede it.
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8 Finite State Machine Descriptions

A sequential circuit can be specified in BLIF logic form, as a finite state machine, or both. An fsm-description is used
to insert a finite state machine description of the current model. It is intended to represent the same sequential circuit
as the current model (which contains logic), but in FSM form. The format of an fsm-description is:

.start_kiss

.i <num-inputs>

.o <num-outputs>
[.p <num-terms>]
[.s <num-states>]
[.r <reset-state>]
<input> <current-state> <next-state> <output>

.

.

.
<input> <current-state> <next-state> <output>
.end_kiss
[.latch_order <latch-order-list>]
[<code-mapping>]

num-inputs is the number of inputs to the FSM, which should agree with the number of inputs in the .inputs construct

for the current model.

num-outputs is the number of outputs of the FSM, which should agree with the number of outputs in the .outputs

construct for the current model.

num-terms is the number of “<input> <current-state> <next-state> <output>” 4-tuples that follow in the FSM

description.

num-states is the number of distinct states that appear in “<current-state>” and “<next-state>” columns.

reset-state is the symbolic name for the reset state for the FSM; it should appear somewhere in the “<current-state>”

column.

input is a sequence of num-inputs members of f0, 1, –g.

output is a sequence of num-outputs members of f0, 1, –g.

current-state and next-state are symbolic names for the current state and next state transitions of the FSM.

latch-order-list is a white-space-separated sequence of latch outputs.

code-mapping is newline separated sequence of:

.code <symbolic-name> <encoded-name>

num-terms and num-states do not have to be specified. If the reset-state is not given, it is assigned to be the first

state encountered in the “<current-state>” column.

The ordering of the bits in the input and output fields will be the same as the ordering of the variables in the .inputs

and .outputs constructs if both an fsm-description and logic functions are given.

latch-order-list and code-mapping are meant to be used when both an fsm-description and a logical description

of the model are given. The two constructs together provide a correspondence between the latches in the logical

description and the state variables in the fsm-description. In a code-mapping, symbolic-name consists of a symbolic

name from the “<current-state>” or “<next-state>” columns, and encoded-name is the pattern of bits (f0, 1g) that

represent the state encoding for symbolic-name. The code-mapping should only be given if both an fsm-description

and logic functions are given. .latch-order establishes a mapping between the bits of the encoded-names of the

code-mapping construct and the latches of the network. The order of the bits in the encoded names will be the same

as the order of the latch outputs in the latch-order-list. There should be the same number of bits in the encoded-name

as there are latches if both an fsm-description and a logical description are specified.
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If both logic-gates and an fsm-description of the model are given, the logic-gate description of the model should

be consistent with the fsm-description, that is, they should describe the same circuit. If they are not consistent there

will be no sensible way to interpret the model, which should then cause an error to be returned.

If only the fsm-description of the network is given, it may be run through a state assignment routine and given a

logic implementation. A sole fsm-description, having no logic implementation, cannot be inserted into another model

by a model-reference; the state assigned network, or a network containing both logic-gates and an fsm-description can.
Example of an fsm-description:

.model 101 # outputs 1 whenever last 3 inputs were 1, 0, 1

.start_kiss

.i 1

.o 1
0 st0 st0 0
1 st0 st1 0
0 st1 st2 0
1 st1 st1 0
0 st2 st0 0
1 st2 st3 1
0 st3 st2 0
1 st3 st1 0
.end_kiss
.end

Above example with a consistent fsm-description and logical description:

.model

.inputs v0

.outputs v3.2

.latch [6] v1 0

.latch [7] v2 0

.start_kiss

.i 1

.o 1

.p 8

.s 4

.r st0
0 st0 st0 0
1 st0 st1 0
0 st1 st2 0
1 st1 st1 0
0 st2 st0 0
1 st2 st3 1
0 st3 st2 0
1 st3 st1 0
.end_kiss
.latch_order v1 v2
.code st0 00
.code st1 11
.code st2 01
.code st3 10
.names v0 [6]
1 1
.names v0 v1 v2 [7]
-1- 1
1-0 1
.names v0 v1 v2 v3.2
101 1
.end

9 Clock Constraints

A clock-constraint is used to set up the behavior of the simulated clocks, and to specify how clock events (rising or
falling edges) occur relative to one another. A clock-constraint is one or more of the following:

.cycle <cycle-time>

.clock_event <event-percent> <event-1> [<event-2> ... <event-n>]
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cycle-time is a floating point number giving the clock cycle time for the model. It is a unitless number that is to be

interpreted by the user.

event-percent is a floating point number representing a percentage of the clock cycle time at which a specific

.clock event occurs. Fifty percent is written as “50.0.”

event-1 through event-n are one of the following:

<rise-fall>’<clock-name>
(<rise-fall>’<clock-name> <before> <after>)

where rise-fall is either “r” or “f” and stands for the rising or falling edge of the clock and clock-name is a clock

from the .clock construct. The apostrophe between rise-fall and clock-name is a separator, and serves no purpose

in and of itself.

before and after are floating point numbers in the same “units” as the cycle-time and are used to define the “skew” in

the clock edges. before represents maximum amount of time before the nominal time that the edge can arrive;

after represents the maximum amount of time after the nominal time that the edge can arrive. The nominal

time is event-percent% of the cycle-time. In the unparenthesized form for the clock-event, before and after are

assumed “0.0.”

All events, event-1 ... event-n, specified in a single .clock event are to be linked together. A routine changing any

one edge should also modify the occurrence time of all the related clock edges.
Example 1:

.clock clock1 clock2

.clock_event 50.0 r’clock1 (f’clock2 2.0 5.0)

Example 2:

.clock clock1 clock2

.clock_event 50.0 r’clock1

.clock_event 50.0 (f’clock2 2.0 5.0)

Both examples specify a nominal time of 50% of the cycle time, that the rising edge of clock1 must occur at exactly

the nominal time, and that the falling edge of clock2 may occur from 2.0 units before to 5.0 units after the nominal

time.

In Example 1, if r’clock1 is later moved to a different nominal time by some routine then f’clock2 should also be

changed. However, in Example 2 changing r’clock1 would not affect f’clock2 even though they originally have the

same value of event-percent.

10 Delay Constraints

A delay-constraint is used to specify parameters to more accurately compute the amount of time signals take to
propagate from one point to another in a model. A delay-constraint is one or more of :

.area <area>

.delay <in-name> <phase> <load> <max-load> <brise> <drise> <bfall> <dfall>

.wire_load_slope <load>

.wire <wire-load-list>

.input_arrival <in-name> <rise> <fall> [<before-after> <event>]

.default_input_arrival <rise> <fall>

.output_required <out-name> <rise> <fall> [<before-after> <event>]

.default_output_required <rise> <fall>

.input_drive <in-name> <rise> <fall>

.default_input_drive <rise> <fall>

.output_load <out-name> <load>

.default_output_load <load>

rise, fall, drive, and load are all floating point numbers giving the rise time, fall time, input drive, and output load.
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in-name is a primary input and out-name is a primary output.

before-after can be one of fb, ag, corresponding to “before” or “after,” and event has the same format as the

unparenthesized form of event-1 in a clock-constraint.

.area sets the area of the model to be area.

.delay sets the delay for input in-name. phase is one of “INV,” “NONINV,” or “UNKNOWN” for inverting, non-inverting,

or neither. max-load is a floating point number for the maximum load. brise, drise, bfall, and dfall are floating

point numbers giving the block rise, drive rise, block fall, and drive fall for in-name.

.wire load slope sets the wire load slope for the model.

.wire sets the wire loads for the model from the list of floating point numbers in the wire-load-list.

.input arrival sets the input arrival time for the input in-name. If the optional arguments are specified, then the input

arrival time is relative to the event.

.output required sets the output required time for the output out-name. If the optional arguments are specified, then

the output required time is relative to the event.

.input drive sets the input drive for the input in-name.

.output load sets the output load for the output out-name.

.default input arrival, .default output required, .default input drive, .default output load set the corresponding de-

fault values for all the inputs/outputs whose values are not specifically set.

There is no actual unit for all the timing and load numbers. Special attention should be given when specifying

and interpreting the values. The timing numbers are assumed to be in the same “unit” as the cycle-time in the .cycle

construct.
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Appendix B : Genlib Format

This is a description of the genlib format which is used to specify library gates in SIS.

1 Combinational Gate Specification

A cell is specified in the following format:

GATE <cell-name> <cell-area> <cell-logic-function>
<pin-info>

.

.
<pin-info>

<cell-name> is the name of the cell in the cell library. The resulting net-list will be in terms of these names.

<cell-area> defines the relative area cost of the cell. It is a floating point number, and may be in any unit system

convenient for the user.

<cell-logic-function> is an equation written in conventional algebraic notation using the operators ’+’ for OR, ’*’ or

nothing (space) for AND, ’!’ or ”’ (post-fixed) for NOT, and parentheses for grouping. The names of the literals

in the equation define the input pin names for the cell; the name on the left hand side of the equation defines the

output of the cell. The equation terminates with a semicolon.

Only single-output cells may be specified. The ’!’ operator may only be used on the input literals, or on the final

output; it is not allowed internal to an expression. (This constraint may disappear in the future).

Also, the actual factored form is significant when a logic function has multiple factored forms. In principle, all

factored forms could be derived for a given logic function automatically; this is not yet implemented, so each must be

specified separately. Note that factored forms which differ by a permutation of the input variables (or by De Morgan’s

law) are not considered unique.
Each <pin-info> has the format:

PIN <pin-name> <phase> <input-load> <max-load>
<rise-block-delay> <rise-fanout-delay>
<fall-block-delay> <fall-fanout-delay>

<pin-name> must be the name of a pin in the <cell-logic-function>, or it can be * to specify identical timing

information for all pins.

<phase> is INV, NONINV, or UNKNOWN corresponding to whether the logic function is negative-unate, positive-

unate, or binate in this input variable respectively. This is required for the separate rise-fall delay model. (In

principle, this information is easily derived from the logic function; this field may disappear in the future).

<input-load> gives the input load of this pin. It is a floating point value, in arbitrary units convenient for the user.

<max-load> specifies a loading constraint for the cell. It is a floating point value specifying the maximum load

allowed on the output.

<rise-block-delay> and <rise-fanout-delay> are the rise-time parameters for the timing model. They are floating

point values, typically in the units nanoseconds, and nanoseconds/unit-load respectively.

<fall-block-delay> and <fall-fanout-delay> are the fall-time parameters for the timing model. They are floating

point values, typically in the units nanoseconds, and nanoseconds/unit-load repsectively.

All of the delay information is specified on a pin-by-pin basis. The meaning is the delay information for the most

critical pin is used to determine the delay for the gate.
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2 Latch Specification

Latches are specified as follows:

LATCH <cell-name> <cell-area> <cell-logic-function>
<pin-info>

.

.
<pin-info>
<latch-spec>
[<clock-delay-info>]
[<constraint-info>]

<cell-name>, <cell-area>, <cell-logic-function> and <pin-info> are the same as in the combinational case.

<latch-spec> has the following format:

SEQ <latch-input> <latch-output> <latch-type>

<latch-input> must be the name of the output of the cell. Thus, <latch-input> is described as a function of

<latch-output> in the <cell-logic-function>. A special name "ANY" can be used for <latch-output> to specify

to the mapper that <latch-output> needs not be a signal name in the <cell-logic-function>. This is useful for

describing D-type flip-flops and latches. <latch-type> can be ACTIVE HIGH or ACTIVE LOW for transparent

latches; RISING EDGE or FALLING EDGE for edge-triggered flip-flops; or ASYNCH for asychronous latches.

<clock-delay-info> is necessary for synchronous latches and flip-flops. It gives the propagation delay from the clock

pin to the output. Its format is as follows:

CONTROL <clock-pin-name> <input-load> <max-load>
<rise-block-delay> <rise-fanout-delay>
<fall-block-delay> <fall-fanout-delay>

<constraint-info> gives the setup and hold time constraints with respect to the clock signal. The format is:

CONSTRAINT <pin-name> <setup-time> <hold-time>

If not specified, the values of 0.0 are assumed.

3 Examples

Example 0 of latch specification:

LATCH "d-latch" 80 Q=D;
PIN D NONINV 1 999 1 .2 1 .2
SEQ Q ANY ACTIVE_HIGH
CONTROL CLK 1 999 1 .2 1 .2
CONSTRAINT D 0.2 0.2

Example 1 of <cell-logic-function>:

O = !(!I1 * I2);

This is legal and defines a NAND gate with 1 inverted input; it could also be specified as

O = I1 + !I2;

There is no advantage or disadvantage to either representation; only one need be given.

Example 2 of <cell-logic-function>:

44



O = !((I1 * I2) + !(I3 + I4));

is incorrectly specified. It must be re-written as either

O = !((I1 * I2) + (!I3 * !I4));

or

O = (!I1 + !I2)*(I3 + I4);

Again, there is no advantage or disadvantage to either representation as they differ only by De Morgan’s law. Only

one need be given. Note that there are no other factored forms for this equation.

Example 3 of <cell-logic-function>:

O = a*b + a*c + b*c;

This is one specification of a majority gate. Another possible specification (which IS considered different) is:

O = a*(b + c) + b*c;

Any permutation of the input variables does not provide a new specification; hence, these are the only two useful

representations for a majority gate logic function. Both should be provided to the technology mapping program, until

further notice.
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