
Majority Logic Synthesis: From
CMOS To Emerging

Technologies
Luca Amarù

Synopsys Inc., Mountain View, California, USA.

Outline

2

Majority Logic Synthesis:
Why Majority Logic?
Majority Inverter Graph (MIG)
MIG Optimization

MIG for Super Conducting Electronics (SCE):
SCE Brief Intro
Synthesis Challenges for SCE
MIG Optimization for SCE

Conclusions

Acknowledgments

3

The material of this presentation has been made possible thanks to
several collaborations on MIG synthesis.

MIG data structure and optimization was originally developed
together with Pierre-Emmanuel Gaillardon and Giovanni De Micheli.

Initial study on MIG application to SCE was done in collaboration
with Jamil Kawa, Arturo Salz and Antun Domic.

Further studies on MIG theory & applications was done in
collaboration with Mathias Soeken, Eleonora Testa, Winston
Haaswijk, Heinz Riener and Odysseas Zografos.

Outline

4

Majority Logic Synthesis:
Why Majority Logic?
Majority Inverter Graph (MIG)
MIG Optimization

MIG for Super Conducting Electronics (SCE):
SCE Brief Intro
Synthesis Challenges for SCE
MIG Optimization for SCE

Conclusions

Outline

5

Majority Logic Synthesis:
Why Majority Logic?
Majority Inverter Graph (MIG)
MIG Optimization

MIG for Super Conducting Electronics (SCE):
SCE Brief Intro
Synthesis Challenges for SCE
MIG Optimization for SCE

Conclusions

Why Majority Logic?
• Majority logic is a powerful generalization of AND/ORs.
• MAJ(x1,x2,x3,…,xn)=1 if more than n/2 inputs are 1.
• MAJ(a,b,c)=ab+ac+bc. MAJ(a,b,1)=a+b. MAJ(a,b,0)=ab.
• More compact as compared to AND-OR logic:

6

AND

AND ORAND OR

OR

AND

OR

x0x1

x2

x3 x4

f

MAJ

MAJ

x0 x1 x2

x3x4

f

How Powerful is Majority?
• Majority logic vs. AND/OR logic in representing arithmetic circuits.

• Consider small depth representations, target 4/5 logic levels.

7

Arithmetic
circuit/Logic

Primitive
AND/OR MAJ

N-bit ADD Size O(2N)
Fan-in O(2N)

Size O(poly(N))
Fan-in O(poly(N))

N-bit MULT Size O(2N)
Fan-in O(2N)

Size O(poly(N))
Fan-in O(poly(N))

N-bit DIV Size O(2N)
Fan-in O(2N)

Size O(poly(N))
Fan-in O(poly(N))

AA. Sherstov, Separating AC 0 from depth-2 majority circuits, Proc. STOC, 2007

Matthias Krause and Pavel Pudlak, On the computational power of depth-2 circuits with
threshold and modulo gates, Theor. Comput. Sci., 174 (1997), pp. 137–156.

Kai-Yeung Siu and Vwani P. Roychowdhury, On optimal depth threshold
circuits for multiplication and related problems, SIAM J. Discrete Math., 7
(1994), pp. 284–292.

Exploiting Majority Logic
• There is an exponential gap between the expressive power of traditional

AND/OR circuits and MAJ circuits when considering arithmetic.

• So, why not exploiting the majority logic representation expressiveness when
synthesizing circuits?

8

In order to manipulate majority logic we define a homogenous data structure.

We call it Majority-Inverter Graph.

Outline

9

Majority Logic Synthesis:
Why Majority Logic?
Majority Inverter Graph (MIG)
MIG Optimization

MIG for Super Conducting Electronics (SCE):
SCE Brief Intro
Synthesis Challenges for SCE
MIG Optimization for SCE

Conclusions

Majority-Inverter Graph

10

Definition: An MIG is a logic network consisting of 3-input
majority nodes and regular/complemented edges.

MAJ

MAJMAJ

MAJ

MAJ

MIG Properties

AOIGs è MIGs

11

AND

OR

OR

x0x1x3 x4

f

MAJ

MAJ

MAJ

x0x1x3 x4

f

1

1

1

MIGs include AOIGs include AIGs

Manipulating MIGs:
MIG Boolean Algebra

12

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x = y), M(x, y, z) = x = y

if(x = yʹ), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: Mʹ(x, y, z) = M(xʹ, yʹ, zʹ)

Ω

Theorem: (B,M,’,0,1) subject to axiom in Ω is a Boolean algebra

MIG Boolean Algebra

13

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x = y), M(x, y, z) = x = y

if(x = yʹ), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: Mʹ(x, y, z) = M(xʹ, yʹ, zʹ)

Ω

MAJ

zx y

MAJ

zy x

MAJ

xz y

MIG Boolean Algebra

14

MAJ

zx x x

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x = y), M(x, y, z) = x = y

if(x = yʹ), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: Mʹ(x, y, z) = M(xʹ, yʹ, zʹ)

Ω

z

MAJ

zx x

MIG Boolean Algebra

15

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x = y), M(x, y, z) = x = y

if(x = yʹ), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: Mʹ(x, y, z) = M(xʹ, yʹ, zʹ)

Ω

MAJ

zy u

MAJ

u x
MAJ

xy u

MAJ

u z

MIG Boolean Algebra

16

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x = y), M(x, y, z) = x = y

if(x = yʹ), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: Mʹ(x, y, z) = M(xʹ, yʹ, zʹ)

Ω

MAJ

zu v

MAJ

y x MAJ

ux y

MAJ

z

vx y

MAJ

MIG Boolean Algebra

17

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x = y), M(x, y, z) = x = y

if(x = yʹ), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: Mʹ(x, y, z) = M(xʹ, yʹ, zʹ)

Ω

MAJ

zx y

MAJ

zx y

Outline

18

Majority Logic Synthesis:
Why Majority Logic?
Majority Inverter Graph (MIG)
MIG Optimization

MIG for Super Conducting Electronics (SCE):
SCE Brief Intro
Synthesis Challenges for SCE
MIG Optimization for SCE

Conclusions

Optimizing MIGs

• Ω is the basis for more elaborated optimization
transformations.
• For instance, it is possible to extend associativity:

• Complementary Associativity:
• M(x, u, M(y, u’, z)) = M(x, u, M(y, x, z))

19

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x = y), M(x, y, z) = x = y

if(x = yʹ), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: Mʹ(x, y, z) = M(xʹ, yʹ, zʹ)

Ω

Theorem: MIG Boolean algebra is sound and complete

Optimizing MIGs

• By using Ω transformations we want to optimize an MIG
• What do we care about?
• Area
• Delay
• Power

20

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x = y), M(x, y, z) = x = y

if(x = yʹ), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: Mʹ(x, y, z) = M(xʹ, yʹ, zʹ)

Ω

è MIG size (details in TCAD’16)

è MIG depth – discussed in this presentation

è MIG SW Activity (details in TCAD’16)

MIG Depth Optimization

21

How to reduce the depth of an MIG?

Let’s see what comes handy from Ω:

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x = y), M(x, y, z) = x = y

if(x = yʹ), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: Mʹ(x, y, z) = M(xʹ, yʹ, zʹ)

Ω

-1 level

-1 level

-1 level

MIG Depth Optimization

• Rationale: move critical variables closer to the outputs via
associativity, distributivity and majority rules
• Reshaping the MIG with other Ω rules

22

MAJ

MAJ

MAJ

vu

x

y

f=x(y+uv)

1

1

1

MAJ

MAJ

MAJ

vu

x

y

f=x(y+uv)

1

x

1

MAJ

MAJ

1 u v

x

f=x(y+uv)

MAJ

y x 1

Compl.
Associativity

Associativity

3
2

module optDC (pi01, pi02, pi03, pi04, po0);
input pi01, pi02, pi03, pi04;
output po0;
wire n5, n6, n7, n8, n9;
INV_X8 U6 (.A(pi03), .Y(n7));
INV_X8 U7 (.A(pi01), .Y(n6));
NOR2_X1 U8 (.A(n6), .B(n7), .Y(n5));
NAND2_X1 U9 (.A(pi04), .B(n5), .Y(n9));
NAND2_X1 U10 (.A(pi01), .B(pi02), .Y(n8));
NAND2_X1 U11 (.A(n9), .B(n8), .Y(po0));

endmodule

Area=1.68 um2

Levels of logic=4

Delay=40 ps

module optMIG (pi01, pi02, pi03, pi04, po0);
input pi01, pi02, pi03, pi04;
output po0;
wire n1, n2, n3;
INV_X8 U1 (.A(pi01), .Y(n1));
NAND2_X1 U2 (.A(pi04), .B(pi03), .Y(n2));
NAND2_X1 U3 (.A(pi01), .B(pi02), .Y(n3));
MIN3_X1 U4 (.A(n2), .B(n3), .C(n1), .Y(po0));

endmodule

Area=1.19 um2

Levels of logic=2

Delay=30 ps

Logic Optimization Experiments:
Adders Case Study

23

88 nodes
24 levels

83 nodes
7 levels

8-bit adder: original
8-bit adder: MIG

Outline

24

Majority Logic Synthesis:
Why Majority Logic?
Majority Inverter Graph (MIG)
MIG Optimization

MIG for Super Conducting Electronics (SCE):
SCE Brief Intro
Synthesis Challenges for SCE
MIG Optimization for SCE

Conclusions

Outline

25

Majority Logic Synthesis:
Why Majority Logic?
Majority Inverter Graph (MIG)
MIG Optimization

MIG for Super Conducting Electronics (SCE):
SCE Brief Intro
Synthesis Challenges for SCE
MIG Optimization for SCE

Conclusions

Super Conducting Electronics
High level overview of SCE from a synthesis perspective.

Operation of electronic circuits when superconducting
phenomena kick in.

Around a few degrees Kelvin.
R drops to 0.
Quantum effects become fundamental.

New type of elementary devices:
Transistors (CMOS) -> Josephson Junction (SCE).
JJ is a 2 terminal device, share some functionality aspect with diodes.
Pulse-logic: logic 1 is a pulse, logic 0 is absence of a pulse.

Super Conducting Electronics
Why SCE?

Speed
Target clock frequencies in
the range of tens to
hundreds of GHz

Energy efficiency
Close to therm. Limit

But we need to consider
overhead energy to cool
down the circuit to a few K.

This is not a technology for
IoT but for more intensive,
high performance,
computing applications

N. Yoshikawa et al., "Recent research developments of AQFP toward
energy-efficient high-performance computing", EUCAS 2017

Super Conducting Electronics
US Intelligence Advanced Research Projects Activity (IARPA)
SuperTools Program:

Outline

29

Majority Logic Synthesis:
Why Majority Logic?
Majority Inverter Graph (MIG)
MIG Optimization

MIG for Super Conducting Electronics (SCE):
SCE Brief Intro
Synthesis Challenges for SCE
MIG Optimization for SCE

Conclusions

Challenges in SCE Synthesis: New Devices,
New Primitives

Picture courtesy of Stony Brook University:
http://www.physics.sunysb.edu/Physics/RSFQ/Lib/
AR/xor.html

Picture from “Reversible logic gate using
adiabatic superconducting devices”,
Scientific reports, 2014

• Means for computation: novel set of
primitive gates

• Information carried through pulses
• Composition/elimination of pulses give rise

to logic interactions

RSFQ: XOR gates

a b XOR

0 0 0
0 1 1
1 0 1
1 1 0

AQFP: MAJ gates

a b c MAJ

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Challenges in SCE Synthesis: New
Constraints and Goals

Picture courtesy of Stony Brook University:
http://www.physics.sunysb.edu/Physics/RSFQ/Lib/PB/split.html Adapted from “Wave Pipelining for Majority-based

Beyond-CMOS Technologies”, DATE’17.

Fanout restriction
• Combinational gates can have only 1

output
• Special splitter gates to provide

multiple fanout

Input signals must arrive at the same time
• In order to guarantee correct functionality
• Consequence of the SCE physics & JJ operation
• To address this, all gates are synced with a clock
• Logic signals must arrive in data coherent “waves”

• Extension of pipelining: wave pipelining

Tackle The Challenges: Extend
Traditional Synthesis Methods

Gate inputs signals arrive at the same time/clock
Wave pipelining – insert clocked buffers

Fan-out restriction
Insertion of splitter trees

Favor new efficient logic primitives
Boolean extraction and native algebras

Empower traditional multi-level synthesis algorithms with this information:
Area optimization aims at maximizing logic sharing

But this creates high fanout gates -> splitter cost
Logic optimization techniques, e.g., Kernel extraction, to take into account fanout/splitter cost

Depth (logic levels) minimization as main timing goal
Correlates with latency of computation in gate-clocked scenario

XOR/MAJ extraction and manipulation
XOR methods and MAJ methods in synthesis

Balancing levels through all paths
Minimize buffer insertion

Synthesis goals

Minimize # of required buffers

Minimize # of required splitters

Exploit new gates expressiveness

Minimize # of JJs -> area

Minimize # of levels -> latency

area optimization

Splitter-aware
depth optimization

Splitter & buffer-aware
size optimization

delay optimization

Physical synthesis HDL Description

Iterate to
further
refine

Outline

33

Majority Logic Synthesis:
Why Majority Logic?
Majority Inverter Graph (MIG)
MIG Optimization

MIG for Super Conducting Electronics (SCE):
SCE Brief Intro
Synthesis Challenges for SCE
MIG Optimization for SCE

Conclusions

1-1 correspondence with AQFP logic
primitives
Native Boolean algebra to manipulate
MIG, thus optimizing AQFP circuits

Synthesis Opportunity for AQFP:
Majority-Inverter Graphs

M AJ

M AJ

M AJ

v u

x

y

g =x(y +u v)

1

1

1

M AJ

M AJ

1 u v

x

g =x(y +u v)

M AJ

y x 1

M I G Op t .

u

v

0 1

y1

Buf Buf

Buf
0

x2

y

x

u

v

0

x1

x

y

0

Buf x 3 levels, 3 MAJ gates, 3 BUF

2 levels, 3 MAJ gates, 1 BUF

Initial Synthesis Evaluations
Initial focus on a small module of a complete processor

Evaluation data adapted from “Wave Pipelining for
Majority-based Beyond-CMOS Technologies”,
DATE’17.

Evaluate the
separate/composite the impact
of splitter insertion and
buffering on #gates

3-
ou

tp
ut

 sp
lit

te
r i

ns
er

tio
n

an
d

bu
ffe

rin
g

on

M
IG

, f
or

 se
ve

n
ac

ad
em

ic
 b

en
ch

m
ar

ks

Decoder block, initial logic chars:
1.5k equivalent AND-2 gates.
27 levels of logic (excluding inverters)
Max fanout for individual gate ~90

We adapted our opt. engines to (i) reduce
max fanout and (ii) reduce levels of logic.
These two targets don’t go together, making
optimization difficult: we look for a tradeoff
Best (minimum) max fanout: 28
Best (minimum) # of levels: 19

Our chosen tradeoff, after splitter and buffer
insertion, with RSFQ technology
considerations, produced a circuit with:
3k equivalent gates.
31 levels of logic.

Outline

36

Majority Logic Synthesis:
Why Majority Logic?
Majority Inverter Graph (MIG)
MIG Optimization

MIG for Super Conducting Electronics (SCE):
SCE Brief Intro
Synthesis Challenges for SCE
MIG Optimization for SCE

Conclusions

Conclusions

37

Majority-Inverter Graphs support optimization techniques.
The expressive power of MIG Boolean algebra axioms, such as
distributivity and inverter propagation, permits more agile logic
manipulation.

MIG optimization show promising results.
MIG can improve QoR for CMOS design flows.

ASICs.
FPGAs.

MIG are key to enable majority-based emerging nanotechnologies.
QCA, SWD, SiNWs, Graphene, etc.
MIG are key to design efficiently logic families in SCE, such as AQFP, RQL, etc.

Questions?

Thank you for your attention!

38

