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Why Majority Logic?
• Majority logic is a powerful generalization of AND/ORs.
• MAJ(x1,x2,x3,…,xn)=1 if more than n/2 inputs are 1.
• MAJ(a,b,c)=ab+ac+bc. MAJ(a,b,1)=a+b. MAJ(a,b,0)=ab.
• More compact as compared to AND-OR logic:
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How Powerful is Majority?
• Majority logic vs. AND/OR logic in representing arithmetic circuits.

• Consider small depth representations, target 4/5 logic levels.
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Arithmetic
circuit/Logic 

Primitive
AND/OR MAJ

N-bit ADD Size O(2N)
Fan-in O(2N)

Size O(poly(N))
Fan-in O(poly(N))

N-bit MULT Size O(2N)
Fan-in O(2N)

Size O(poly(N))
Fan-in O(poly(N))

N-bit DIV Size O(2N)
Fan-in O(2N)

Size O(poly(N))
Fan-in O(poly(N))

AA. Sherstov, Separating AC 0 from depth-2 majority circuits, Proc. STOC, 2007

Matthias Krause and Pavel Pudlak, On the computational power of depth-2 circuits with 
threshold and modulo gates, Theor. Comput. Sci., 174 (1997), pp. 137–156.

Kai-Yeung Siu and Vwani P. Roychowdhury, On optimal depth threshold 
circuits for multiplication and related problems, SIAM J. Discrete Math., 7 
(1994), pp. 284–292. 



Exploiting Majority Logic
• There is an exponential gap between the expressive power of traditional 

AND/OR circuits and MAJ circuits when considering arithmetic. 

• So, why not exploiting the majority logic representation expressiveness when 
synthesizing circuits?
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In order to manipulate majority logic we define a homogenous data structure.

We call it Majority-Inverter Graph.
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Majority-Inverter Graph
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Definition: An MIG is a logic network consisting of 3-input 
majority nodes and regular/complemented edges. 

MAJ

MAJMAJ

MAJ

MAJ



MIG Properties

AOIGs è MIGs
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MIGs include AOIGs include AIGs   



Manipulating MIGs: 
MIG Boolean Algebra
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1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x = y), M(x, y, z) = x = y

if(x = yʹ), M(x, y, z) = z 
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: Mʹ(x, y, z) = M(xʹ, yʹ, zʹ) 

Ω

Theorem: (B,M,’,0,1) subject to axiom in Ω is a Boolean algebra    



MIG Boolean Algebra
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MIG Boolean Algebra
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1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x = y), M(x, y, z) = x = y
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MIG Boolean Algebra
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MIG Boolean Algebra
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MIG Boolean Algebra
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Optimizing MIGs

• Ω is the basis for more elaborated optimization 
transformations.
• For instance, it is possible to extend associativity:

• Complementary Associativity:
• M(x, u, M(y, u’, z)) = M(x, u, M(y, x, z)) 
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1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x = y), M(x, y, z) = x = y
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Ω

Theorem: MIG Boolean algebra is sound and complete   



Optimizing MIGs

• By using Ω transformations we want to optimize an MIG
• What do we care about? 
• Area
• Delay
• Power
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1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x = y), M(x, y, z) = x = y

if(x = yʹ), M(x, y, z) = z 
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: Mʹ(x, y, z) = M(xʹ, yʹ, zʹ) 

Ω

è MIG size (details in TCAD’16)

è MIG depth – discussed in this presentation

è MIG SW Activity (details in TCAD’16)



MIG Depth Optimization
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How to reduce the depth of an MIG? 

Let’s see what comes handy from Ω:

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x = y), M(x, y, z) = x = y

if(x = yʹ), M(x, y, z) = z 
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: Mʹ(x, y, z) = M(xʹ, yʹ, zʹ) 

Ω

-1 level

-1 level

-1 level



MIG Depth Optimization

• Rationale: move critical variables closer to the outputs via 
associativity, distributivity and majority rules
• Reshaping the MIG with other Ω rules
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module optDC ( pi01, pi02, pi03, pi04, po0 );
input pi01, pi02, pi03, pi04;
output po0;
wire   n5, n6, n7, n8, n9;
INV_X8 U6 (.A(pi03), .Y(n7));
INV_X8 U7 (.A(pi01), .Y(n6));
NOR2_X1 U8 (.A(n6), .B(n7), .Y(n5));
NAND2_X1 U9 (.A(pi04), .B(n5), .Y(n9));
NAND2_X1 U10 (.A(pi01), .B(pi02), .Y(n8));
NAND2_X1 U11 (.A(n9), .B(n8), .Y(po0));

endmodule

Area=1.68 um2

Levels of logic=4

Delay=40 ps

module optMIG ( pi01, pi02, pi03, pi04, po0 );
input pi01, pi02, pi03, pi04;
output po0;
wire   n1, n2, n3;
INV_X8 U1 (.A(pi01), .Y(n1));
NAND2_X1 U2 (.A(pi04), .B(pi03), .Y(n2));
NAND2_X1 U3 (.A(pi01), .B(pi02), .Y(n3));
MIN3_X1 U4 (.A(n2), .B(n3), .C(n1), .Y(po0));

endmodule

Area=1.19 um2

Levels of logic=2

Delay=30 ps



Logic Optimization Experiments:
Adders Case Study
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88 nodes
24 levels

83 nodes
7 levels

8-bit adder: original
8-bit adder: MIG
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Super Conducting Electronics
High level overview of SCE from a synthesis perspective.

Operation of electronic circuits when superconducting 
phenomena kick in.

Around a few degrees Kelvin. 
R drops to 0. 
Quantum effects become fundamental. 

New type of elementary devices: 
Transistors (CMOS) -> Josephson Junction (SCE).
JJ is a 2 terminal device, share some functionality aspect with diodes.
Pulse-logic: logic 1 is a pulse, logic 0 is absence of a pulse.



Super Conducting Electronics
Why SCE?

Speed
Target clock frequencies in 
the range of tens to 
hundreds of GHz

Energy efficiency
Close to therm. Limit

But we need to consider 
overhead energy to cool 
down the circuit to a few K.

This is not a technology for 
IoT but for more intensive, 
high performance, 
computing applications

N. Yoshikawa et al., "Recent research developments of AQFP toward 
energy-efficient high-performance computing", EUCAS 2017



Super Conducting Electronics
US Intelligence Advanced Research Projects Activity (IARPA) 
SuperTools Program:
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Challenges in SCE Synthesis: New Devices, 
New Primitives

Picture courtesy of Stony Brook University: 
http://www.physics.sunysb.edu/Physics/RSFQ/Lib/
AR/xor.html

Picture from “Reversible logic gate using 
adiabatic superconducting devices”, 
Scientific reports, 2014

• Means for computation: novel set of 
primitive gates

• Information carried through pulses
• Composition/elimination of pulses give rise 

to logic interactions

RSFQ: XOR gates 

a b XOR 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

AQFP: MAJ gates 

a b c MAJ 

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 



Challenges in SCE Synthesis: New 
Constraints and Goals

Picture courtesy of Stony Brook University: 
http://www.physics.sunysb.edu/Physics/RSFQ/Lib/PB/split.html Adapted from “Wave Pipelining for Majority-based 

Beyond-CMOS Technologies”, DATE’17.  

Fanout restriction
• Combinational gates can have only 1 

output
• Special splitter gates to provide 

multiple fanout

Input signals must arrive at the same time 
• In order to guarantee correct functionality
• Consequence of the SCE physics & JJ operation
• To address this, all gates are synced with a clock
• Logic signals must arrive in data coherent “waves”

• Extension of pipelining: wave pipelining



Tackle The Challenges: Extend 
Traditional Synthesis Methods  

Gate inputs signals arrive at the same time/clock
Wave pipelining – insert clocked buffers

Fan-out restriction
Insertion of splitter trees

Favor new efficient logic primitives
Boolean extraction and native algebras

Empower traditional multi-level synthesis algorithms with this information:
Area optimization aims at maximizing logic sharing

But this creates high fanout gates -> splitter cost
Logic optimization techniques, e.g., Kernel extraction, to take into account fanout/splitter cost

Depth (logic levels) minimization as main timing goal
Correlates with latency of computation in gate-clocked scenario

XOR/MAJ extraction and manipulation 
XOR methods and MAJ methods in synthesis

Balancing levels through all paths
Minimize buffer insertion

Synthesis goals 

Minimize # of required buffers 

Minimize # of required splitters 

Exploit new gates expressiveness 

Minimize # of JJs -> area 

Minimize # of levels -> latency 

area optimization 

Splitter-aware  
depth optimization 

Splitter & buffer-aware  
size optimization 

delay optimization 

Physical synthesis HDL Description 

Iterate to 
further 
refine 
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1-1 correspondence with AQFP logic 
primitives
Native Boolean algebra to manipulate 
MIG, thus optimizing AQFP circuits

Synthesis Opportunity for AQFP: 
Majority-Inverter Graphs
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Initial Synthesis Evaluations
Initial focus on a small module of a complete processor

Evaluation data adapted from “Wave Pipelining for 
Majority-based Beyond-CMOS Technologies”, 
DATE’17.  

Evaluate the 
separate/composite the impact 
of splitter insertion and 
buffering on #gates 
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Decoder block, initial logic chars:
1.5k equivalent AND-2 gates.
27 levels of logic (excluding inverters)
Max fanout for individual gate ~90 

We adapted our opt. engines to (i) reduce 
max fanout and (ii) reduce levels of logic. 
These two targets don’t go together, making 
optimization difficult: we look for a tradeoff
Best (minimum) max fanout: 28
Best (minimum) # of levels: 19

Our chosen tradeoff, after splitter and buffer 
insertion, with RSFQ technology 
considerations, produced a circuit with:
3k equivalent gates.
31 levels of logic.
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Conclusions
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Majority-Inverter Graphs support optimization techniques. 
The expressive power of MIG Boolean algebra axioms, such as 
distributivity and inverter propagation, permits more agile logic 
manipulation.

MIG optimization show promising results.
MIG can improve QoR for CMOS design flows.

ASICs.
FPGAs.

MIG are key to enable majority-based emerging nanotechnologies.
QCA, SWD, SiNWs, Graphene, etc.
MIG are key to design efficiently logic families in SCE, such as AQFP, RQL, etc. 



Questions?

Thank you for your attention!
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