Majority Logic Synthesis: From
CMQOS To Emerging
Technologies

Luca Amaru

Synopsys Inc., Mountain View, California, USA.

NLUBYAY

Silicon to Software

Outline

® Majority Logic Synthesis:
® Why Majority Logic?
® Majority Inverter Graph (MIG)
® MIG Optimization

® MIG for Super Conducting Electronics (SCE):
® SCE Brief Intro
® Synthesis Challenges for SCE
® MIG Optimization for SCE

® Conclusions

Acknowledgments

The material of this presentation has been made possible thanks to
several collaborations on MIG synthesis.

MIG data structure and optimization was originally developed
together with Pierre-Emmanuel Gaillardon and Giovanni De Micheli.

Initial study on MIG application to SCE was done in collaboration
with Jamil Kawa, Arturo Salz and Antun Domic.

Further studies on MIG theory & applications was done in
collaboration with Mathias Soeken, Eleonora Testa, Winston
Haaswijk, Heinz Riener and Odysseas Zografos.

Outline

® Majority Logic Synthesis:
® Why Majority Logic?
® Majority Inverter Graph (MIG)
® MIG Optimization

® MIG for Super Conducting Electronics (SCE):
® SCE Brief Intro
® Synthesis Challenges for SCE
® MIG Optimization for SCE

® Conclusions

Outline

® Majority Logic Synthesis:
® Why Majority Logic?
® Majority Inverter Graph (MIG)
® MIG Optimization

® MIG for Super Conducting Electronics (SCE):
® SCE Brief Intro
® Synthesis Challenges for SCE
® MIG Optimization for SCE

® Conclusions

Why Majority Logic?
* Majority logic is a powerful generalization of AND/OR:s.
* MAJ(Xq,X5,X3,...,X,)=1 if more than n/2 inputs are 1.
 MAJ(a,b,c)=ab+ac+bc. MAJ(a,b,1)=a+b. MAJ(a,b,0)=ab.
* More compact as compared to AND-OR logic:

x0 x1 x2

How Powerful is Majority?

* Majority logic vs. AND/OR logic in representing arithmetic circuits.

* Consider small depth representations, target 4/5 logic levels.

Set of all functions

VMlonotone - |Threshold

Majority

AA. Sherstov, Separating AC 0 from depth-2 majority circuits, Proc. STOC, 2007 Kai-Yeung Siu and Vwani P. Roychowdhury, On optimal depth threshold
circuits for multiplication and related problems, SIAM J. Discrete Math., 7
Matthias Krause and Pavel Pudlak, On the computational power of depth-2 circuits with (1994), pp. 284-292.

threshold and modulo gates, Theor. Comput. Sci., 174 (1997), pp. 137-156.

Exploiting Majority Logic

* There is an exponential gap between the expressive power of traditional
AND/OR circuits and MAJ circuits when considering arithmetic.

* So, why not exploiting the majority logic representation expressiveness when
synthesizing circuits?

Optimized
Gate-level
Netlist

H| Logic Optimization Technology Mapping

Front-end Back-end

® In order to manipulate majority logic we define a homogenous data structure.

® We call it Majority-Inverter Graph.

Outline

® Majority Logic Synthesis:
® Why Majority Logic?
® Majority Inverter Graph (MIG)
® MIG Optimization

® MIG for Super Conducting Electronics (SCE):
® SCE Brief Intro
® Synthesis Challenges for SCE
® MIG Optimization for SCE

® Conclusions

Majority-Inverter Graph

Definition: An MIG is a logic network consisting of 3-input
majority nodes and regular/complemented edges.

10

MIG Properties

AOIGs =» MIGs

/\

X3 x4 x1 x0 x1 1 x0

MIGs include AOIGs include AlGs

11

Manipulating MIGs:
MIG Boolean Algebra

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)

2- Majority:if(x=y), M(x,y, z) =x=y

0 if(x=y’), M(x, y, z) = z

3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))

4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: M'(x, y, z) = M(x’, y’, Z’)

Theorem: (B,M,’,0,1) subject to axiom in Q is a Boolean algebra

12

MIG Boolean Algebra

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x=y), M(x,y, z) =x =y
0 iftx=y’), M(x, y, z) =z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: M'(x, y, z) = M(x’, y’, Z)

13

MIG Boolean Algebra

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority:if(x=y), M(x,y, z) =x=y
0 if(x=y’), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: M'(x, y, z) = M(x’, y’, Z’)

14

MIG Boolean Algebra

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x=y), M(x, y,z) =x =y
0 if(x=y’), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: M'(x, y, z) = M(x’, y’, Z’)

15

MIG Boolean Algebra

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x=y), M(x, y, z) =x =y
0 iftx=y’), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: M'(x, y, z) = M(x’, y’, Z’)

MIG Boolean Algebra

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority: if(x=y), M(x, y,z) =x =y
0 iftx=y’), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: M'(x, y, z) = M(x’, y’, Z’)

17

Outline

® Majority Logic Synthesis:
® Why Majority Logic?
® Majority Inverter Graph (MIG)
® MIG Optimization

® MIG for Super Conducting Electronics (SCE):
® SCE Brief Intro
® Synthesis Challenges for SCE
® MIG Optimization for SCE

® Conclusions

18

Optimizing MIGs

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority:if(x=y), M(x,y, z) =x=y
0 if(x=y’), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: M'(x, y, z) = M(x’, y’, Z’)

* () is the basis for more elaborated optimization
transformations.

* For instance, it is possible to extend associativity:

 Complementary Associativity:
* M(x, u, My, u’, z)) = M(x, u, M(y, x, z))

Theorem: MIG Boolean algebra is sound and complete

19

Optimizing MIGs

1- Commutativity: M(x, y, z) = M(y, x, z) = M(z, y, x)
2- Majority:if(x=y), M(x,y, z) =x=y
0 if(x=y’), M(x, y, z) = z
3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
5- Inverter Propagation: M'(x, y, z) = M(x’, y’, Z’)

* By using Q transformations we want to optimize an MIG

What do we care about?

* Area
Delay 2> MiGsize (details in TCAD’16)

Power = MIG depth — discussed in this presentation

= MIG SW Activity (details in TCAD’16)

20

MIG Depth Optimization

® How to reduce the depth of an MIG?

® Let’s see what comes handy from Q):

1- Commutativitxﬁ(x, Y, Z) :W M(z, y, x)
2- Majority:if(x=y), M(x, y, z) =4
0 ifx=y'), M(x, y, 2) = 2 \

3- Associativity: M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))

4- Distributivity: M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)

\&/

21

MIG Depth Optimization

e Rationale: move critical variables closer to the outputs via
associativity, distributivity and majority rules

* Reshaping the MIG with other Q rules

f=x(y+uv) f=x(y+uv)

module optDC (pi0O1, pi02, pi03, pi04, po0);
input pi01, pi02, pi03, pi04; module optMIG (piO1, pi02, pi03. 2% po0);
output po0; input pi01, pi02, pi03, pils
wire n5, n6, n7 4l output po0;
: wire of
INv_xe P\E

NAND2)
NAND2_
MIN3_X1| {)

endmodule

Logic Optimization Experiments:
Adders Case Study

It adder: origina

/ / / Y \
/ / , p— v

Adder type Inputs | Outputs Original Optimized/AVII§
Size Size | /Depth |
2-op 32 bit 64 33 352 610 12\
2-op 64 bit 128 65 704 { 1159 11
2-op 128 bit 256 129 1408 14672 19
2-op 256 bit 512 257 2816 7650 16
3-op 32 but 96 32 760 1938 16
4-op 64 bit 256 66 1336 2212 18

| g e) B @ L
l / 1 L NC AT o L1 wi 1 w1 i
fy § TNy ‘ s ' ¥ §
/
i / 1>< | f K.. | f |
. an W al M » " A I »
- \ v/] ' 1l ,
N R | J |
- - X | |

Outline

® Majority Logic Synthesis:
® Why Majority Logic?
® Majority Inverter Graph (MIG)
® MIG Optimization

® MIG for Super Conducting Electronics (SCE):
® SCE Brief Intro
® Synthesis Challenges for SCE
® MIG Optimization for SCE

® Conclusions

24

Outline

® Majority Logic Synthesis:
® Why Majority Logic?
® Majority Inverter Graph (MIG)
® MIG Optimization

® MIG for Super Conducting Electronics (SCE):
® SCE Brief Intro
® Synthesis Challenges for SCE
® MIG Optimization for SCE

® Conclusions

25

Super Conducting Electronics

® High level overview of SCE from a synthesis perspective.

® Operation of electronic circuits when superconducting
phenomena kick in.

® Around a few degrees Kelvin.
® R dropstoO.
® Quantum effects become fundamental.

® New type of elementary devices:
® Transistors (CMOS) -> Josephson Junction (SCE).
® JJis a2 terminal device, share some functionality aspect with diodes.

® Pulse-logic: logic 1 is a pulse, logic 0 is absence of a pulse.

Super Conducting Electronics

Why SCE?

Speed

® Target clock frequencies in
the range of tens to
hundreds of GHz

Energy efficiency

® Close to therm. Limit

But we need to consider
overhead energy to cool
down the circuit to a few K.
@ This is not a technology for
loT but for more intensive,

high performance,
computing applications

RSFQ

° | Energy-efficient SFQ

=
-
[S—
>
1))
—
L
o)
S8
N —
Mm

107"
Clock Period [s]

N. Yoshikawa et al., "Recent research developments of AQFP toward
energy-efficient high-performance computing", EUCAS 2017

Super Conducting Electronics

® US Intelligence Advanced Research Projects Activity (IARPA)
SuperTools Program:

Synopsys Awarded Multi-Year IARPA SuperTools
Contract to Develop EDA Tool Flows for

Superconducting Electronics

Program's Goal is to Advance Superconductor Design and Propel Electronics Beyond CMOS

NLUBYAY

Silicon to Software

[®®]
LmiI@/@mx

Outline

® Majority Logic Synthesis:
® Why Majority Logic?
® Majority Inverter Graph (MIG)
® MIG Optimization

® MIG for Super Conducting Electronics (SCE):
® SCE Brief Intro
® Synthesis Challenges for SCE
® MIG Optimization for SCE

® Conclusions

29

Challenges in SCE Synthesis: New Devices,
New Primitives

Means for computation: novel set of
primitive gates

Information carried through pulses
Composition/elimination of pulses give rise
to logic interactions

AQFP: MAJ gates

RSFQ: XOR gates

MAJ gate

X
=MAJ(a, b, ¢)

Picture from “Reversible logic gate using
adiabatic superconducting devices”,
Scientific reports, 2014

Picture courtesy of Stony Brook University:
http://www.physics.sunysb.edu/Physics/RSFQ/Lib/
AR/xor.html

Challenges in SCE Synthesis: New
Constraints and Goals

* Combinational gates can have only 1
output

* Special splitter gates to provide
multiple fanout

O Majority node Delayed node
() Fan-outnode [| Buffer

Picture courtesy of Stony Brook University:

http://www.physics.sunysb.edu/Physics/RSFQ/Lib/PB/split.html Adapted from “Wave Pipelining for Majority-based

Beyond-CMOS Technologies”, DATE'17.

* In order to guarantee correct functionality

* Consequence of the SCE physics & JJ operation

« To address this, all gates are synced with a clock data. | Ffs or wove | wova | wove | wave

* Logic signals must arrive in data coherent “waves” '
* Extension of pipelining: wave pipelining

Core logic

'ackle The Challenges: Extend
raditional Synthesis Methods

Minimize # of required buffers

Synthesis goals Minimize # of required splitters

Exploit new gates expressiveness

Area optimization aims at maximizing logic sharing

But this creates high fanout gates -> splitter cost

Logic optimization techniques, e.g., Kernel extraction, to take into account fanout/splitter cost
Depth (logic levels) minimization as main timing goal

Correlates with latency of computation in gate-clocked scenario
XOR/MAJ extraction and manipulation

XOR methods and MAJ methods in synthesis

Balancing levels through all paths Minimize # of JJs -> area

Minimize buffer insertion
Iterate to
further

refine

Minimize # of levels -> latency

HDL Description Splitter & buffer-aware Splitter-aware

Physical synthesis

size optimization depth optimization

area optimization delay optimization

Outline

® Majority Logic Synthesis:
® Why Majority Logic?
® Majority Inverter Graph (MIG)
® MIG Optimization

® MIG for Super Conducting Electronics (SCE):
® SCE Brief Intro
® Synthesis Challenges for SCE
® MIG Optimization for SCE

® Conclusions

33

Synthesis Opportunity for AQFP:
Majority-Inverter Graphs

-1 correspondence with AQFP logic
primitives
Native Boolean algebra to manipulate
MIG, thus optimizing AQFP circuits

2 levels, 3 MAJ gates, 1 BUF

| 3 levels, 3 MAJ gates, 3 BUF \

- . . Evaluate the
| N |t |d | Sy nt h SNIN) Eva | U at IONS separate/composite the impact
of splitter insertion and

Initial focus on a small module of a complete processg buffering on #gates

Gates

I Buffers
I Fan-out

Decoder block, initial logic chars:
1.5k equivalent AND-2 gates.

27 levels of logic (excluding inverters)
Max fanout for individual gate ~90

Number of total components

1611261, 3517 1.25(13)

We adapted our opt. engines to (i) reduce
max fanout and (ii) reduce levels of logic.
These two targets don’t go together, making
optimization difficult: we look for a tradeoff
Best (minimum) max fanout: 28

Best (minimum) # of levels: 19

Original

Algorithm

Depth Size

Original Original

SASC 622 1885

DES AREA 4187 13325
MUL32 9097 18998
HAMMING 2072 11523
MULG64 25773 139914
REVX 7517 34911
DIFFEQ]I 17726 306937

Our chosen tradeoff, after splitter and buffer
insertion, with RSFQ technology
considerations, produced a circuit with:

3k equivalent gates.
31 levels of |OgiC, Evaluation data adapted from “Wave Pipelining for

3-output splitter insertion and buffering on
MIG, for seven academic benchmarks

Majority-based Beyond-CMOS Technologies”,
DATE’17.

Outline

® Majority Logic Synthesis:
® Why Majority Logic?
® Majority Inverter Graph (MIG)
® MIG Optimization

® MIG for Super Conducting Electronics (SCE):
® SCE Brief Intro
® Synthesis Challenges for SCE
® MIG Optimization for SCE

® Conclusions

36

Conclusions

® Majority-Inverter Graphs support optimization techniques.

® The expressive power of MIG Boolean algebra axioms, such as
distributivity and inverter propagation, permits more agile logic
manipulation.

® MIG optimization show promising results.
® MIG can improve QoR for CMOS design flows.
® ASICs.
® FPGAs.
® MIG are key to enable majority-based emerging nanotechnologies.

® QCA, SWD, SiNWs, Graphene, etc.
® MIG are key to design efficiently logic families in SCE, such as AQFP, RQL, etc.

37

Questions?

Thank you for your attention!

NWLUBYAY

Silicon to Software

