Expressing Flexibility in Logic Synthesis by Boolean Relations

Anna Bernasconi Università di Pisa, Italy

Overview

- Classic applications
 - Multilevel logic optimization
- Approximate Logic Synthesis
- Bounded-depth logic synthesis via Boolean relations
 - Bi-decomposed Circuits
 - Synthesis with critical signals: P-circuits

Multilevel logic optimization

Given a multilevel logic network, obtain an **equivalent** representation of the network, **optimal** w.r.t. a cost function involving area and delay

- identifying subnetworks to be optimized,
- deriving their flexibility
- and replacing such subnetworks by simpler, optimized ones

SINGLE-OUTPUT SUBNETWORKS

The flexibility for implementing the node's function can be represented by don't cares

Multilevel logic optimization

Given a multilevel logic network, obtain an **equivalent** representation of the network, **optimal** w.r.t. a cost function involving area and delay

- identifying subnetworks to be optimized,
- deriving their flexibility
- and replacing such subnetworks by simpler, optimized ones

SINGLE-OUTPUT SUBNETWORKS

The flexibility for implementing the node's function can be represented by don't cares

Multi-output subnetworks

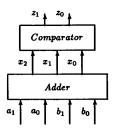
Don't cares are not sufficient for representing all the flexibility

Don't care-based methods allow us to optimize only *one* single-output subnetwork at a time

Boolean relations describe all the flexibility

Boolean relations allow the simultaneous modification of all nodes of a subnetwork

Minimization of a *two-bit adder* due to the filtering effect of a *comparator* [Brayton, Somenzi, 1989]



$$z = 01 \Rightarrow a + b < 3$$

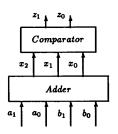
 $z = 00 \Rightarrow (a + b = 3) \lor (a + b = 4)$
 $z = 10 \Rightarrow a + b > 4$.

Input values can be partitioned into three equivalence classes:

Values less than 3: {000, 001, 010} Values equal to 3 or 4: {011, 100} Values greater than 4: {101, 110, 111}

The values in each class are not distinghished by the comparator

Minimization of a *two-bit adder* due to the filtering effect of a *comparator* [Brayton, Somenzi, 1989]



$$z = 01 \Rightarrow a + b < 3$$

 $z = 00 \Rightarrow (a + b = 3) \lor (a + b = 4)$
 $z = 10 \Rightarrow a + b > 4$.

Input values can be partitioned into three equivalence classes:

Values less than 3: {000, 001, 010} Values equal to 3 or 4: {011, 100} Values greater than 4: {101, 110, 111}

The values in each class are not distinghished by the comparator

We can change the output value of the adder, to any other value in the same equivalence class.

Boolean relation describing the flexible adder

$a_1a_0b_1b_0$	$x_2 x_1 x_0$
{0000,0001,0010,0100,1000,0101}	{000,001,010}
$\{0011, 0110, 1001, 1010, 1100, 0111, 1101\}$	{011, 100}
$\{1011, 1110, 1111\}$	{101, 110, 111}

Minimization of a *two-bit adder* due to the filtering effect of a *comparator* [Brayton, Somenzi, 1989]

Minimization with don't cares including the normal adder as an acceptable implementation

$a_1 a_0 b_1 b_0$	$x_2 x_1 x_0$
11-0	0 1 1
- 1 1 0	0 1 1
10-1	011
-011	011
- 111	100
11-1	100
111-	010
1 - 1 -	100

Minimization of the Boolean relation much simpler minimum solution

$a_1a_0b_1b_0$	$x_2 x_1 x_0$
0 - 1 -	0 1 0
1 - 0 -	010
1 - 1 -	100
1	001
- 1	001

Approximate Logic Synthesis (ALS)

- Exploit error tolerance of applications to implement approximate designs with
 - smaller area
 - smaller delay
 - or lower energy consumption
- Modify some outputs of a function, so that the produced error is tolerable

Approximate Logic Synthesis (ALS)

- Exploit error tolerance of applications to implement approximate designs with
 - smaller area
 - smaller delay
 - or lower energy consumption
- Modify some outputs of a function, so that the produced error is tolerable

Error frequency

number of minterms on which an error occurs, as a fraction of the total number of minterms

Error magnitude

maximum amount by which the numerical value at the outputs of a function can deviate from the exact value

ALS and Boolean Relations

[Miao, Gerstlauer, Orshansky, 2013]:

- ALS under arbitrary error magnitude and error frequency constraints
- Two-level logic minimization algorithm, two-phase approach:
 - derive the solution of the problem constrained only by the magnitude of errors

 the solution is iteratively refined to meet the original error frequency constraint

ALS and Boolean Relations

[Miao, Gerstlauer, Orshansky, 2013]:

- ALS under arbitrary error magnitude and error frequency constraints
- Two-level logic minimization algorithm, two-phase approach:
 - ◆ derive the solution of the problem constrained only by the magnitude of errors
 → expressed and solved using Boolean relations

 the solution is iteratively refined to meet the original error frequency constraint

ALS constrained by Error Magnitude only

- Multi-output function $f: \{0,1\}^n \to \{0,1\}^k$
- *M*: constrain on the magnitude of possible errors

PROBLEM

Find $f': \{0,1\}^n \to \{0,1\}^k$ of **minimal cost** s.t.

$$\forall x \in \{0,1\}^n \quad |f(x) - f'(x)| \le M$$

ALS constrained by Error Magnitude only

- Multi-output function $f: \{0,1\}^n \to \{0,1\}^k$
- M: constrain on the magnitude of possible errors

PROBLEM

Find $f': \{0,1\}^n \to \{0,1\}^k$ of **minimal cost** s.t.

$$\forall x \in \{0,1\}^n \quad |f(x) - f'(x)| \le M$$

• $\forall x \in \{0,1\}^n$, e(x) = output error set for xadditional values that the function can take while satisfying the error magnitude constraint

$$\mathcal{R}_{f'}(x) \in \{f(x) \cup e(x)\}$$

each input corresponds to more than one output: f' becomes a Boolean relation $\mathcal{R}_{f'}$

 \Rightarrow minimize the Boolean relation $\mathcal{R}_{f'}$, under a given metric (i.e., the number of literals in a SOP representation)

Adder

$x_1 x_2$	$f(x_1,x_2)$
00	00
01	01
10	01
11	10

$$L(f) = 6$$

$$SOP(f^{(1)}) = x_1x_2$$

 $SOP(f^{(2)}) = \overline{x}_1x_2 + x_1\overline{x}_2$

Adder

$x_1 x_2$	$f(x_1,x_2)$
0 0	00
01	01
10	01
11	10

$$L(f) = 6$$

$$SOP(f^{(1)}) = x_1x_2$$

 $SOP(f^{(2)}) = \overline{x}_1x_2 + x_1\overline{x}_2$

Adder, M=1

$x_1 x_2$	$\mathcal{R}_{f'}(x_1,x_2)$
00	{00,01}
01	{01,00,10}
10	{01,00,10}
11	{10,01,11}

Adder

$x_1 x_2$	$f(x_1,x_2)$
0 0	00
01	01
10	01
11	10

$$L(f) = 6$$

$$SOP(f^{(1)}) = x_1x_2$$

 $SOP(f^{(2)}) = \overline{x}_1x_2 + x_1\overline{x}_2$

Adder, M=1

$$\begin{array}{c|cc} x_1 \, x_2 & \mathcal{R}_{f'}(x_1, x_2) \\ \hline 0 \, 0 & \{00, 01\} \\ 0 \, 1 & \{01, 00, 10\} \\ 1 \, 0 & \{01, 00, 10\} \\ 1 \, 1 & \{10, 01, 11\} \\ \end{array}$$

$$L(f')=0$$

$$SOP(f^{(1)}) = 0$$

 $SOP(f^{(2)}) = 1$

Adder

$x_1 x_2$	$f(x_1,x_2)$
00	00
01	01
10	01
11	10

$$L(f) = 6$$

$$SOP(f^{(1)}) = x_1x_2$$

 $SOP(f^{(2)}) = \overline{x}_1x_2 + x_1\overline{x}_2$

Adder, M=1

$$\begin{array}{c|cccc} x_1 \, x_2 & \mathcal{R}_{f'}(x_1, x_2) \\ \hline 0 \, 0 & \{00, 01\} & \textbf{X} \\ 0 \, 1 & \{01, 00, 10\} \\ 1 \, 0 & \{01, 00, 10\} \\ 1 \, 1 & \{10, 01, 11\} & \textbf{X} \\ \end{array}$$

$$L(f')=0$$

$$SOP(f^{(1)}) = 0$$

 $SOP(f^{(2)}) = 1$

Error frequency: 50 %

Frequency constrained ALS algorithm

- The BR solution may not satisfy the constrain on error frequency
- Iterative and greedy algorithm for systematically corrects the wrong outputs (leading to the smallest cost increase) until the error frequency constraint is met

Frequency constrained ALS algorithm

- The BR solution may not satisfy the constrain on error frequency
- Iterative and greedy algorithm for systematically corrects the wrong outputs (leading to the smallest cost increase) until the error frequency constraint is met

ERROR FRI	EQUENCY:	25 %	
<i>x</i> ₁ <i>x</i> ₂	$f(x_1,x_2)$	$\mathcal{R}_{f'}(x_1,x_2)$	
0.0	00	{00, <mark>01</mark> }	X
01	01	{ <mark>01</mark> , 00, 10}	
10	01	{ <mark>01</mark> , 00, 10}	
11	10	$\{10, 01, 11\}$	X
'	l		

Frequency constrained ALS algorithm

- The BR solution may not satisfy the constrain on error frequency
- Iterative and greedy algorithm for systematically corrects the wrong outputs (leading to the smallest cost increase) until the error frequency constraint is met

Error frequency: 25 %			
	<i>x</i> ₁ <i>x</i> ₂	$f(x_1,x_2)$	$\mathcal{R}_{f'}(x_1,x_2)$
	00	00	{00,01}
	01	01	{ <mark>01</mark> , 00, 10}
	10	01	{ <mark>01</mark> , 00, 10}
	11	10	{10, 01, 11} X
L(f')=2			
$SOP(f^{(1)}) = 0$ $SOP(f^{(2)}) = x_1 + x_2$			

Bounded-depth logic synthesis via Boolean relations: Bi-Decomposition (joint work with R. K. Brayton, V.Ciriani, G. Trucco, and T. Villa)

$$f:\{0,1\}^n o \{0,1,-\}$$
 $f=(f_{on},f_{dc},f_{off})$ can be covered with

- → a SOP derived by the on-set (+ some dc-points)
- ightarrow a POS resulting from the complement of a SOP for the off-set (+ some dc-points)
 - ★ Which one gives the best cover, the SOP or the POS form?
 - * Can we study a form that is part in SOP and part in POS form, and is better than both?

Bounded-depth logic synthesis via Boolean relations: Bi-Decomposition (joint work with R. K. Brayton, V.Ciriani, G. Trucco, and T. Villa)

$$f: \{0,1\}^n \to \{0,1,-\}$$

 $f = (f_{on}, f_{dc}, f_{off})$ can be covered with

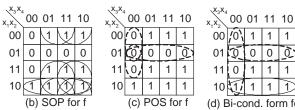
- \rightarrow a SOP derived by the on-set (+ some dc-points)
- ightarrow a POS resulting from the complement of a SOP for the off-set (+ some dc-points)
 - * Which one gives the best cover, the SOP or the POS form?
 - * Can we study a form that is part in SOP and part in POS form, and is better than both?

We propose a **bi-decomposed form** that is part in SOP form and part in POS

$$f_B = \overline{f_0}$$
 op f_1

Bounded-depth logic synthesis via Boolean relations: **Bi-Decomposition**

X_3X_4 X_1X_2	00	01	11	10	
00	0	1	1	1	
01	0	0	0	0	
11	0	1	1	1	
10	1	1	1	1	
(a) f					



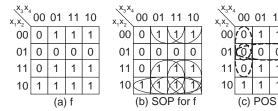
•
$$f_{SOP} = f_1^{SOP} = x_1 \overline{x}_2 + x_1 x_3 + x_1 x_4 + \overline{x}_2 x_3 + \overline{x}_2 x_4$$

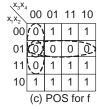
10 literals

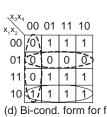
•
$$f_{POS} = \overline{f}_0^{POS} = (x_1 + \overline{x}_2)(x_1 + x_3 + x_4)(\overline{x}_2 + x_3 + x_4)$$

8 literals

Bounded-depth logic synthesis via Boolean relations: **Bi-Decomposition**







•
$$f_{SOP} = f_1^{SOP} = x_1 \overline{x}_2 + x_1 x_3 + x_1 x_4 + \overline{x}_2 x_3 + \overline{x}_2 x_4$$

10 literals

•
$$f_{POS} = \overline{f}_0^{POS} = (x_1 + \overline{x}_2)(x_1 + x_3 + x_4)(\overline{x}_2 + x_3 + x_4)$$

8 literals

•
$$f_B = \overline{f}_0 + f_1 = ((x_1 + \overline{x}_2)(x_3 + x_4)) + x_1 \overline{x}_2$$

6 literals

1000 is in the the OFF set of \overline{f}_0 and in the ON set of f_1 thus is in the ON set of the $\overline{f}_0 + f_1$

Synthesis of Bi-decomposed Circuits and Boolean relations

$$f:\{0,1\}^n \to \{0,1,-\}, \qquad f = u \text{ op } v \qquad \qquad u \leftarrow \overline{f_0}, \ v \leftarrow f_1$$

Inputs of u and v: the same as the inputs of f: x_1, \ldots, x_n **Output**: is the output that **op** takes on $u(x_1, \ldots, x_n)$ and $v(x_1, \ldots, x_n)$

Synthesis of Bi-decomposed Circuits and Boolean relations

$$f:\{0,1\}^n \to \{0,1,-\}, \qquad f = u \text{ op } v \qquad \qquad u \leftarrow \overline{f_0}, \ v \leftarrow f_1$$

$$f = u \mathbf{op} v$$

$$u \leftarrow \overline{f_0}, \ v \leftarrow f_1$$

Inputs of u and v: the same as the inputs of f: x_1, \ldots, x_n

Output: is the output that **op** takes on $u(x_1, ..., x_n)$ and $v(x_1, ..., x_n)$

AND GROUP

$$\begin{array}{c|c} u \ v & \mathsf{AND} \\ \hline u \ v & \not= \\ u \ \overline{v} & \not\Rightarrow \\ \hline u \ \overline{v} & \mathsf{NOR} \end{array}$$

OR GROUP

$u + v$ $\overline{u} + v$ $u + \overline{v}$ $\overline{u} + \overline{v}$	OR
$\overline{u} + v$	\Rightarrow
$u + \overline{v}$	<=
$\overline{u} + \overline{v}$	NAND

XOR GROUP

$$u \oplus v \mid XOR$$

 $u \overline{\oplus} v \mid XNOR$

Synthesis of Bi-decomposed Circuits and Boolean relations

$$f:\{0,1\}^n \to \{0,1,-\}, \hspace{1cm} f=u \hspace{1cm} extbf{op} \hspace{1cm} v \hspace{1cm} u \leftarrow \overline{f_0}, \hspace{1cm} v \leftarrow f_1$$

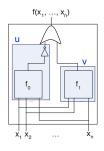
Inputs of u and v: the same as the inputs of $f: x_1, \ldots, x_n$

Output: is the output that **op** takes on $u(x_1, \ldots, x_n)$ and $v(x_1, \ldots, x_n)$

$\begin{array}{c|c} AND GROUP \\ u v & AND \\ \overline{u} v & \not= \\ u \overline{v} & \not\Rightarrow \\ \overline{u} \overline{v} & NOR \end{array}$

- The two-input operator induces flexibility that cannot be expressed exactly by don't care conditions only: a Boolean relation is required
- For each binary **op**, we define $\mathcal{R}_{op}: \{0,1\}^n \to \{0,1\}^2$ s.t.
 - the set of functions compatible with \mathcal{R}_{op} corresponds to the set of pairs (u, v) occurring in all bi-decomposed circuit implementations of f w.r.t. op.
 - an optimal solution of \mathcal{R}_{op} is an optimal bi-decomposed circuit for f

Construction of \mathcal{R}_{OR}



• $\forall x \in f_{on}$, x must be associated to one of the three output values on which u + v evaluates to 1

$$\mathcal{R}_{OR}(x) = \{01, 10, 11\} = \{1-, -1\}$$

• $\forall x \in f_{off}$, x must be associated to the output 00 on which u + v evaluates to 0

$$\mathcal{R}_{OR}(x) = 00$$

• $\forall x \in f_{dc}$, x can be associated to any output

$$\mathcal{R}_{OR}(x) = \{--\}$$

Construction of \mathcal{R}_{op}

AND table

	$\mathcal{R}_{\mathit{AND}}$	$\mathcal{R}_{ eq}$	$\mathcal{R}_{\mathit{NOR}}$	$\mathcal{R}_{\not\Rightarrow}$
$x \in f_{on}$	{11}	{01}	{00}	{10}
$x \in f_{off}$	$\{0-,-0\}$	$\{1-, -0\}$	$\{1-,-1\}$	$ \{0-,-1\} $
$x \in f_{dc}$	{}	{}	{}	{}

OR table

	$\mathcal{R}_{\mathit{OR}}$	$\mathcal{R}_{\Rightarrow}$	$\mathcal{R}_{\mathit{NAND}}$	\mathcal{R}_{\Leftarrow}
$x \in f_{on}$	$\{1-,-1\}$	$\{0-,-1\}$	$\{0-,-0\}$	[1-,-0]
$x \in f_{off}$	{00}	{10}	{11}	{01}
$x \in f_{dc}$	{}	{}	{}	{}

XOR table

	$\mathcal{R}_{ extit{XNOR}}$	$\mathcal{R}_{\mathit{XOR}}$
$x \in f_{on}$	$\{00, 11\}$	$\{01, 10\}$
$x \in f_{off}$	$\{01, 10\}$	$\{00, 11\}$
$x \in f_{dc}$	{}	{}

Construction of \mathcal{R}_{op}

The three tables are distinguished by whether

- the offset is partitioned (AND group)
- the onset is partitioned (OR group)
- or both are partitioned (XOR group)

How this partitioning is done is task of the *Boolean relation* minimizer

Construction of \mathcal{R}_{op}

The three tables are distinguished by whether

- the offset is partitioned (AND group)
- the **onset** is partitioned **(OR group)**
- or both are partitioned (XOR group)

How this partitioning is done is task of the *Boolean relation minimizer*

Bi-decomposed circuit minimization problem \iff problem of finding an optimal implementation of \mathcal{R}_{op}

Good gains in a majority of benchmarks against affordable increases in synthesis time

Synthesis with critical signals: P-circuits (joint work with V. Ciriani, G. Trucco, and T. Villa)

Scenario

- Logic synthesis in presence of critical signals that should be moved toward the output
- signals with high switching activity
 - \rightarrow for decreasing power consumption
- late arriving signals
 - ightarrow for decreasing circuit delay

Synthesis with critical signals: P-circuits

(joint work with V. Ciriani, G. Trucco, and T. Villa)

Scenario

- Logic synthesis in presence of critical signals that should be moved toward the output
- signals with high switching activity
 - \rightarrow for decreasing power consumption
- late arriving signals
 - ightarrow for decreasing circuit delay

PROBLEM

Restructure (or synthesize) a circuit in order to move critical signals near to the output (decreasing the cone of influence)

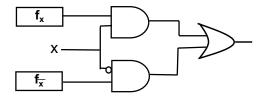
- minimizing the circuit area
- keeping the number of levels bounded
- performing an efficient minimization

Simple solution: Shannon decomposition

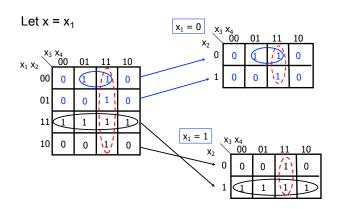
x is the critical signal

$$f = \overline{x} f_{|x=0} + x f_{|x=1}$$

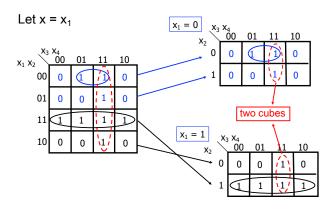
- the cofactors $f_{|x=0}$ and $f_{|x=1}$ do not depend on x
- x is near to the output



Problem of Shannon approach



Problem of Shannon approach



It is not a compact representation

Decomposition with intersection

- try not to split the cubes
- let the critical signal near to the output

IDEA

- the cubes that do not depend on x and cross the two sets are not projected
- how to identify these cubes?

Decomposition with intersection

- try not to split the cubes
- let the critical signal near to the output

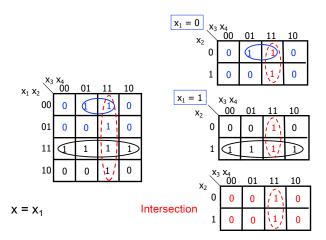
IDEA

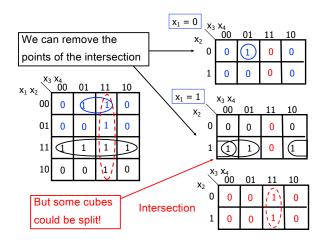
- the cubes that do not depend on x and cross the two sets are not projected
- how to identify these cubes?

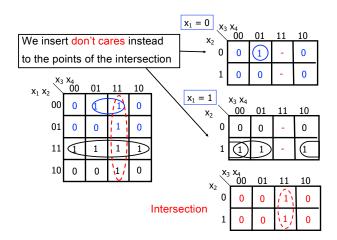
They are in the intersection between the two cofactors

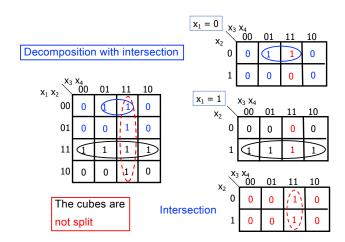
$$I=f_{|x_i=0}\cap f_{|x_i=1}$$

• keep / unprojected, and project only the minterms in $f_{|x_1=0} \setminus I$ and $f_{|x_2=1} \setminus I$









P-circuits for completely specified functions

- if a point is in I and is useful for a better minimization of f_{|xi=0} and f_{|xi=1},
 it can be kept both in the cofactors and in the intersection
- if a point is covered in both the projected cofactors, it is not necessary to cover it in I (replaced by a don't care in I)

P-circuits for completely specified functions

- if a point is in I and is useful for a better minimization of f_{|xi=0} and f_{|xi=1},
 it can be kept both in the cofactors and in the intersection
- if a point is covered in both the projected cofactors, it is not necessary to cover it in I (replaced by a don't care in I)

P-CIRCUIT

A P-circuit of a completely specified function f is the circuit

$$P(f) = \overline{x}_i f^{=} + x_i f^{\neq} + f^{I}$$

- **6** P(f) = f

Minimization of P-circuits using Boolean Relation

Find the sets $f^{=}, f^{\neq}, f^{I}$ leading to a **P-circuit of minimal cost**

- $f: \{0,1\}^n \to \{0,1\}$ $\mathcal{R}_f: \{0,1\}^{n-1} \to \{0,1\}^3$
- Input set for \mathcal{R}_f : all input variables but the critical signal x_i
- Output set for \mathcal{R}_f : all triple of functions $f^=, f^{\neq}, f^I$ defining a P-circuit for f

Minimization of P-circuits using Boolean Relation

Find the sets $f^{=}, f^{\neq}, f^{I}$ leading to a **P-circuit of minimal cost**

- $f: \{0,1\}^n \to \{0,1\}$ $\mathcal{R}_f: \{0,1\}^{n-1} \to \{0,1\}^3$
- Input set for \mathcal{R}_f : all input variables but the critical signal x_i
- Output set for \mathcal{R}_f : all triple of functions $f^=, f^{\neq}, f^I$ defining a P-circuit for f

$X_1 \dots X_{i-1} X_{i+1} \dots X_n$	$\mathcal{R}_f = (f^=, f^{\neq}, f^I)$
points in $f_{ x_i =0} \setminus I$	{100}
points in $f_{ x_i=1} \setminus I$	{010}
points in I	$\{1, 11-\}$
all other points	{000}

Minimization of P-circuits using Boolean Relation

Find the sets $f^{=}, f^{\neq}, f^{I}$ leading to a **P-circuit of minimal cost**

- $f: \{0,1\}^n \to \{0,1\}$ $\mathcal{R}_f: \{0,1\}^{n-1} \to \{0,1\}^3$
- Input set for \mathcal{R}_f : all input variables but the critical signal x_i
- Output set for \mathcal{R}_f : all triple of functions f^-, f^+, f^- defining a P-circuit for f

$X_1 \dots X_{i-1} X_{i+1} \dots X_n$	$\mathcal{R}_f = (f^=, f^{\neq}, f^I)$
points in $f_{ x_i=0} \setminus I$	{100}
points in $f_{ x_i=1} \setminus I$	{010}
points in I	$\{1, 11-\}$
all other points	{000}

${ m Theorem}$

P-circuit minimization for f

minimization of the Boolean relation \mathcal{R}_f

P-circuits minimized with Boolean relations are more compact than P-circuits expressed and minimized as incompletely specified functions

Conclusions

- Boolean relations can be extremely useful for modeling Boolean hard optimization problems
 - → with Boolean relations we can model problems that cannot be completely described with incompletely specified functions
- Problem: scalability of the approach
 - Boolean relation minimization is a very hard problem
 - Boolean relation minimizers cannot handle relations with many outputs
- Boolean relations have been successfully used in logic synthesis to solve problems that can be cast as the minimization of relations with a constant number of outputs (2, 3)

THANK YOU