Expressing Flexibility in Logic Synthesis

by Boolean Relations

Anna Bernasconi
Universita di Pisa, Italy

Expressing Flexibility in Logic Synthesis by Boolean Relations

Overview

e Classic applications
— Multilevel logic optimization

e Approximate Logic Synthesis

e Bounded-depth logic synthesis via Boolean relations

— Bi-decomposed Circuits
— Synthesis with critical signals: P-circuits

Expressing Flexibility in Logic Synthesis by Boolean Relations

Multilevel logic optimization

Given a multilevel logic network, obtain an equivalent representation of the
network, optimal w.r.t. a cost function involving area and delay

— identifying subnetworks to be optimized,
— deriving their flexibility
— and replacing such subnetworks by simpler, optimized ones

SINGLE-OUTPUT SUBNETWORKS

The flexibility for implementing the node’s function can be represented
by don't cares

Expressing Flexibility in Logic Synthesis by Boolean Relations

Multilevel logic optimization

Given a multilevel logic network, obtain an equivalent representation of the
network, optimal w.r.t. a cost function involving area and delay

— identifying subnetworks to be optimized,
— deriving their flexibility
— and replacing such subnetworks by simpler, optimized ones

SINGLE-OUTPUT SUBNETWORKS

The flexibility for implementing the node’s function can be represented
by don't cares

MULTI-OUTPUT SUBNETWORKS

Don't cares are not sufficient for representing all the flexibility

Don't care-based methods allow us to optimize only one
single-output subnetwork at a time

Boolean relations describe all the flexibility

Boolean relations allow the simultaneous modification of all nodes
of a subnetwork

Expressing Flexibility in Logic Synthesis by Boolean Relations

Minimization of a two-bit adder due to the filtering effect

of a comparator [Brayton, Somenzi, 1989]

llf Ioi z=01=2a+b<3
z=00=@+b=3)V@a+b=4
z=1=a+b >4

Comparator

T2 z1 Zo

Input values can be partitioned into three equivalence classes:
Adder Values less than 3: {000, 001, 010}
¥ Values equal to 3 or 4: {011, 100}
ay I ag [b I bo I Values greater than 4: {101, 110, 111}
The values in each class are not distinghished by the comparator

Expressing Flexibility in Logic Synthesis by Boolean Relations

Minimization of a two-bit adder due to the filtering effect

of a comparator [Brayton, Somenzi, 1989]

llf Iol z=01=2a+b<3
z=00=@+b=3)V@a+b=4
z=1=a+b >4

Comparator

T2 z1 Zo

Input values can be partitioned into three equivalence classes:
Adder Values less than 3: {000, 001, 010}
¥ Values equal to 3 or 4: {011, 100}
ay I ag [b I bo I Values greater than 4: {101, 110, 111}
The values in each class are not distinghished by the comparator

We can change the output value of the adder, to any other value in the same
equivalence class.

Boolean relation describing the flexible adder

aj ag by bo | X2 X1 Xp
{0000, 0001, 0010, 0100, 1000, 0101} {000,001, 010}
{0011, 0110, 1001, 1010, 1100, 0111, 1101} {011,100}
{1011,1110,1111} {101,110, 111}

Expressing Flexibility in Logic Synthesis by Boolean Relations

Minimization of a two-bit adder due to the filtering effect

of a comparator [Brayton, Somenzi, 1989]

Minimization with don’t cares Minimization of the Boolean relation
including the normal adder as an much simpler minimum solution
acceptable implementation

aj ag by by X2 X1 Xg az ag by by ‘ X2 X1 Xg
11-0 011 0-1- 010
-110 011 1-0- 010
10-1 011 1-1- 100
-011 011 ---1 001
-111 100 -1-- 001
11-1 100
111- 010
1-1- 100

Expressing Flexibility in Logic Synthesis by Boolean Relations

Approximate Logic Synthesis (AL

e Exploit error tolerance of applications to implement approximate
designs with
— smaller area
— smaller delay
— or lower energy consumption

e Modify some outputs of a function, so that the produced error is
tolerable

Expressing Flexibility in Logic Synthesis by Boolean Relations

Approximate Logic Synthesis (ALS)

e Exploit error tolerance of applications to implement approximate
designs with
— smaller area

— smaller delay
— or lower energy consumption

e Modify some outputs of a function, so that the produced error is
tolerable

ERROR MAGNITUDE
FRROR FREQUENCY [ERrOR MAGNITUDE]
. . maximum amount by which the
number of minterms on which an error .
numerical value at the outputs of a

occurs, as a fraction of the total E .
function can deviate from the exact

number of minterms
value

Expressing Flexibility in Logic Synthesis by Boolean Relations

S and Boolean Relations

[Miao, Gerstlauer, Orshansky, 2013]:

e ALS under arbitrary error magnitude and error frequency constraints

e Two-level logic minimization algorithm, two-phase approach:

@ derive the solution of the problem constrained only by the magnitude
of errors

@ the solution is iteratively refined to meet the original error frequency
constraint

Expressing Flexibility in Logic Synthesis by Boolean Relations

S and Boolean Relations

[Miao, Gerstlauer, Orshansky, 2013]:

e ALS under arbitrary error magnitude and error frequency constraints

e Two-level logic minimization algorithm, two-phase approach:

@ derive the solution of the problem constrained only by the magnitude
of errors — expressed and solved using Boolean relations

@ the solution is iteratively refined to meet the original error frequency
constraint

Expressing Flexibility in Logic Synthesis by Boolean Relations

ALS constrained by Error Magnitude only

e Multi-output function f : {0,1}" — {0, 1}*

e M: constrain on the magnitude of possible errors

PROBLEM

Find ' : {0,1}" — {0,1}* of minimal cost s.t.

Vx € {0,1}" |f(x) — f(x)| < M

Expressing Flexibility in Logic Synthesis by Boolean Relations

ALS constrained by Error Magnitude only

e Multi-output function f : {0,1}" — {0, 1}*

e M: constrain on the magnitude of possible errors

PROBLEM

Find ' : {0,1}" — {0,1}* of minimal cost s.t.

Vx € {0,1}" |f(x) — f(x)| < M

e Vx € {0,1}", e(x) = output error set for x

additional values that the function can take while satisfying the error
magnitude constraint

Re(x) € {f(x)Ue(x)}
each input corresponds to more than one output: f' becomes a

Boolean relation R/

= minimize the Boolean relation R/, under a given metric (i.e., the
number of literals in a SOP representation)

Expressing Flexibility in Logic Synthesis by Boolean Relations

ADDER

xix | fx,x)

00 00
01 01
10 01
11 10

L(f) =6

SOP(f(l)) = X1X0
SOP(f(z)) = X1X2 + X1X2

Expressing Flexibility in Logic Synthesis by Boolean Relations

xix | fxi, %) x1x | Re(x, x2)

00 00 00 | {00,01}

01 01 01 | {01,00,10}

10 01 10 | {01,00,10}

11 10 11 | {10,01,11}
L(f) =6

SOP(f(l)) = X1X0
SOP(f®) = X130 + x1%2

Expressing Flexibility in Logic Synthesis by Boolean Relations

xix | fx,x) x1x | Re(x, x2)
00 00 00 | {00,01]
01 01 01 | {01,00,10}
10 | ot 10 | {01,00,10}
11 10 11 | {10,01,11}
L(f) =6 L(f) =0
SOP(f) = x1x SOP(fMY) =0

SOP(f®) = X1x + x1%2 SOP(f@) =1

Expressing Flexibility in Logic Synthesis by Boolean Relations

x1x | f(x,%) x1 X | Re(xi, %)
00 00 00 | {00,01} X
01 01 01 | {01,00,10}
10 | ot 10 | {01,00,10}
11 10 11 | {10,01,11} X
L(f) =6 L(f) =0
SOP(f) = x1x SOP(fMY) =0
SOP(F®) = %16 + x1%a SOP(F®) = 1

ERROR FREQUENCY: 50 %

Expressing Flexibility in Logic Synthesis by Boolean Relations

Frequency constrained ALS algorithm

e The BR solution may not satisfy the constrain on error frequency

o [terative and greedy algorithm for systematically corrects the
wrong outputs (leading to the smallest cost increase) until the
error frequency constraint is met

Expressing Flexibility in Logic Synthesis by Boolean Relations

Frequency constrained ALS algorithm

e The BR solution may not satisfy the constrain on error frequency

o [terative and greedy algorithm for systematically corrects the
wrong outputs (leading to the smallest cost increase) until the
error frequency constraint is met

ERROR FREQUENCY: 25 %

X1 X2 ‘ f(Xl,Xz) ‘ Rf/(Xl,Xz)

00 00 {00,01} X
01 01 {01, 00, 10}
10 01 {01, 00,10}

11 10 {10,01,11} X

Expressing Flexibility in Logic Synthesis by Boolean Relations

Frequency constrained ALS algorithm

e The BR solution may not satisfy the constrain on error frequency

o [terative and greedy algorithm for systematically corrects the
wrong outputs (leading to the smallest cost increase) until the
error frequency constraint is met

ERROR FREQUENCY: 25 %

X1 X2 ‘ f(Xl,Xz) ‘ Rf/(Xl,Xz)

00 00 {00, 01}
01 01 {01,00, 10}
10 01 {01,00, 10}
11 10 {10,01,11} X
L(f)=2
SOP(fM) =0

SOP(fP) = x; 4+ x

Expressing Flexibility in Logic Synthesis by Boolean Relations

Bounded-depth logic synthesis via Boolean relations: Bi-Decomposition

(joint work with R. K. Brayton, V.Ciriani, G. Trucco, and T. Villa)

f:{0,1}" —» {0,1, -}
f = (fon, fac, forr) can be covered with

— a SOP derived by the on-set (+ some dc-points)

— a POS resulting from the complement of a SOP for the
off-set (+ some dc-points)

* Which one gives the best cover, the SOP or the POS form?

* Can we study a form that is part in SOP and part in POS
form, and is better than both?

Expressing Flexibility in Logic Synthesis by Boolean Relations

Bounded-depth logic synthesis via Boolean relations: Bi-Decomposition

(joint work with R. K. Brayton, V.Ciriani, G. Trucco, and T. Villa)

f:{0,1}" —» {0,1, -}
f = (fon, fac, forr) can be covered with

— a SOP derived by the on-set (+ some dc-points)

— a POS resulting from the complement of a SOP for the
off-set (+ some dc-points)

* Which one gives the best cover, the SOP or the POS form?
* Can we study a form that is part in SOP and part in POS

form, and is better than both?

We propose a bi-decomposed form that is part in
SOP form and part in POS

fg=1f op f

Expressing Flexibility in Logic Synthesis by Boolean Relations

Bounded-depth logic synthesis via Boolean relations:

Bi-Decomposition

X,X, X3X, XgXy X3,
o 00 01 11 10 3\ 100 01 11 10, 00 01 11 10 , X '00 01 11 10
00|0|1]1]1 00{ 0 N\LNL/ L ooroy1|1|1 oof/o\ 1|11
ot/olo[o]o] o1lof[ofofo| o1fgfofo[ay o1{Tjo]|0]q]
11/of1f2]|2| aajopa| NI 11pof1|1{1| 11lo)a1f1]1
o/1f1]1]1| 0@ 10{1][1][1][1]| 10fLf1]1]X
(@f (b) SOP for f (c) POSforf (d) Bi-cond. form for f
e fsop = fISOP = X1X2 + X1X3 + X1Xa + XoX3 + XoXq 10 literals

—P0OS .
e fpps = fO = (X1 + 72)(X1 —+ x3 + X4)(?2 + x3 + X4) 8 literals

Expressing Flexibility in Logic Synthesis by Boolean Relations

Bounded-depth logic synthesis via Boolean relations:

Bi-Decomposition

XX, XsX, XoX, XX,
s 0001 1110 ,X'00 01 11 10 ;0001 11 10, X'00 01 11 10
00|0|1]1]1 00{ 0 N\LNL/ L ooroy1|1|1 oof/o\ 1|11
ot{o]o[o]o]| oifofofofo]| oifgfolo[@] o1{Tjo o[}
11{of1 22| o A1 11hof1|1|1]| 11lof1f1]1
10(1(1|1(1 102 K1 KO T 10(1(1(1|1 10RL)(1|11
(@f (b) SOP for f (c) POSforf (d) Bi-cond. form for f
e fsop = fISOP = X1X2 + X1X3 + X1Xa + XoX3 + XoXq 10 literals
—POS _ _ .
o fpos =fy = (x1+X2)(x1 + x3 + x4)(X2 + x3 + xa) 8 literals
o fg = ?0 +f = ((Xl —|—Y2)(X3 + X4)) + X1X2 6 literals

1000 is in the the OFF set oi?o and in the ON set of £
thus is in the ON set of the fo + £

Expressing Flexibility in Logic Synthesis by Boolean Relations

Synthesis of Bi-decomposed Circuits and Boolean relations

f:{0,1}" =+ {0,1,-}, f=wuop v U+ fy, v fy
Inputs of u and v: the same as the inputs of f: x1,...,x,
Output: is the output that op takes on u(xi,...,xa) and v(xi,...,Xxn)

Expressing Flexibility in Logic Synthesis by Boolean Relations

Synthesis of Bi-decomposed Circuits and Boolean relations

f:{0,1}" - {0,1,-}, f=wuop v U+ fy, v fy
Inputs of u and v: the same as the inputs of f: x1,...,x,
Output: is the output that op takes on u(xi,...,xa) and v(xi,...,Xxn)

AND GrouP OR GROUP
AND wiw | @R XOR GROUP

uv
v <+~ u+v = udv XOR
uv # u+v = u® v | XNOR
uv

NOR u+v | NAND

Expressing Flexibility in Logic Synthesis by Boolean Relations

Synthesis of Bi-decomposed Circuits and Boolean relations

f:{0,1}" - {0,1,-}, f=wuop v U+ fy, v fy
Inputs of u and v: the same as the inputs of f: x1,...,x,
Output: is the output that op takes on u(xi,...,xa) and v(xi,...,Xxn)

AND GrouP OR GROUP
AND wiw | @R XOR GROUP

uv

v <+~ u+v = udv XOR
uv # u+v = u® v | XNOR
uv | NOR u+v | NAND

e The two-input operator induces flexibility that cannot be expressed exactly by don't
care conditions only: a Boolean relation is required

e For each binary op, we define R, : {0,1}" — {0,1}? s.t.
— the set of functions compatible with R, corresponds to the set of pairs (u, v)

occurring in all bi-decomposed circuit implementations of £ w.r.t. op.
— an optimal solution of R, is an optimal bi-decomposed circuit for f

Expressing Flexibility in Logic Synthesis by Boolean Relations

Construction of Ror

| e Vx € f,n, x must be associated to one of the three output
u ﬁ values on which u + v evaluates to 1
!—Z‘& Y Ror(x) ={01,10,11} = {1—, -1}

|]
e YV x € for, x must be associated to the output 00 on which
XX, . u + v evaluates to 0

Ror(x) = 00

e Vx € fye, x can be associated to any output

Ror(x) = {-—}

Expressing Flexibility in Logic Synthesis by Boolean Relations

Construction of R,

AND table

R anp Re RnoRr R4
X € fon {11} {01} {00} {10}
x € forr | {0—, -0} | {1—-, -0} | {1—, -1} | {0—, -1}
xefe |) | oy |) |)

OR table
Ror R Rnanp R
X € fop | {1—, -1} | {0—, -1} | {0—, -0} | {1—, -0}
X € foff {00} {10} {11} {o1}
x€fge | {——} {—} {—} {—}
XOR table

Rxnor Rxor
x € fon | 100,11} | {01,10}
x € for | {01,101 | {00,11}
x€fee | {——} | {——}

Expressing Flexibility in Logic Synthesis by Boolean Relations

Construction of R,

The three tables are distinguished by whether
o the offset is partitioned (AND group)
e the onset is partitioned (OR group)
e or both are partitioned (XOR group)

How this partitioning is done is task of the Boolean relation
minimizer

Expressing Flexibility in Logic Synthesis by Boolean Relations

Construction of R,

The three tables are distinguished by whether
o the offset is partitioned (AND group)
e the onset is partitioned (OR group)
e or both are partitioned (XOR group)
How this partitioning is done is task of the Boolean relation
minimizer
Bi-decomposed circuit minimization problem

<~
problem of finding an optimal implementation of R,

Good gains in a majority of benchmarks against affordable
increases in synthesis time

Expressing Flexibility in Logic Synthesis by Boolean Relations

Synthesis with critical signals: P-circuits

(joint work with V. Ciriani, G. Trucco, and T. Villa)

Scenario
e Logic synthesis in presence of critical signals that should be moved
toward the output

e signals with high switching activity

— for decreasing power consumption
e late arriving signals

— for decreasing circuit delay

Expressing Flexibility in Logic Synthesis by Boolean Relations

Synthesis with critical signals: P-circuits

(joint work with V. Ciriani, G. Trucco, and T. Villa)

Scenario

e Logic synthesis in presence of critical signals that should be moved
toward the output

e signals with high switching activity

— for decreasing power consumption
e late arriving signals

— for decreasing circuit delay

PROBLEM

Restructure (or synthesize) a circuit in order to move critical signals
near to the output (decreasing the cone of influence)

— minimizing the circuit area
— keeping the number of levels bounded

— performing an efficient minimization

Expressing Flexibility in Logic Synthesis by Boolean Relations

Simple solution: Shannon decomposition

e x is the critical signal

f = 7f|X:0 + X fI-XZ].

e the cofactors f,—o and fi,_; do not depend on x

e x is near to the output

e —
:)—

Expressing Flexibility in Logic Synthesis by Boolean Relations

Problem of Shannon approach

X4
00 01 11 10
,\
0 0 |:1'| O
1 1
<dF

Expressing Flexibility in Logic Synthesis by Boolean Relations

Problem of Shannon approach

It is not a compact representation

Expressing Flexibility in Logic Synthesis by Boolean Relations

Decomposition with intersection

e try not to split the cubes

o let the critical signal near to the output

IDEA

e the cubes that do not depend on x and cross the two sets
are not projected

e how to identify these cubes?

Expressing Flexibility in Logic Synthesis by Boolean Relations

Decomposition with intersection

e try not to split the cubes

o let the critical signal near to the output

IDEA

e the cubes that do not depend on x and cross the two sets
are not projected

e how to identify these cubes?

They are in the intersection between the two cofactors

[= f|-x,-:0 N f|xi:1

e keep | unprojected, and project only the minterms in
fixl:O \ I and f|x,-:1 \ /

Expressing Flexibility in Logic Synthesis by Boolean Relations

Example

Xy X

« 00 01 11 10
N
of o ||V o
1 T
X3 Xg 1o 0 ‘\1," 0
00 01 11 10
N X3 X4
00) 0 D] 0 % \00 01 11 10
oif o o[ty o ol oo |10
uld] [] 3 il [/ 3
100 0] o]|a/o0 X3 X
— « 00 01 11 10
2 N\
ol ofo |1y o
Intersection T
ofot/]o

Expressing Flexibility in Logic Synthesis by Boolean Relations

Example

We can remove the X, 00 01 11 10

points of the intersection 0l 0 @ 0o
X3 Xq
xix;, 00 01 i1
00| o P
o1l oo it}
uf@d{ [i1]
of ofo /o X3 X
= o \00 01 11 10
2 AN
olofo |1y o
But some cubes Intersection —
could be split! 1lofot/fo

Expressing Flexibility in Logic Synthesis by Boolean Relations

Example

10

We insert don’t cares instead % oL
to the points of the intersection o[© @

X3 Xq
X1 X, 00 01 11

00| 0 i1
1 |
o1ff o Jo |11
uf@d{ [i1]
100 oo]ua/o0 X5 X4
— % \00 01 11 10
2 7N
ol ofo |1y o
Intersection T
ofot/]o

Expressing Flexibility in Logic Synthesis by Boolean Relations

Example

Decomposition with intersection | of o [C[D)o
1
X5 X4 0 0 0 0
Xi% 00 01 11 10
X3 X4
0] o D] 0 % \00 01 11 10
otf oo ity o ofofo]o]o
uld] [] 3 1 BN R
0 o] oo X3 X4
— « 00 01 11 10
2 AN
ojo]o |/t o
The cubes are Intersection —
not split 1pojopt/fo

Expressing Flexibility in Logic Synthesis by Boolean Relations

P-circuits for completely specified functions

e if a point is in / and is useful for a better minimization of f,_¢ and f,,_1,
it can be kept both in the cofactors and in the intersection

e if a point is covered in both the projected cofactors, it is not necessary
to cover it in / (replaced by a don't care in /)

Expressing Flexibility in Logic Synthesis by Boolean Relations

P-circuits for completely specified functions

e if a point is in / and is useful for a better minimization of f,_¢ and f,,_1,
it can be kept both in the cofactors and in the intersection

e if a point is covered in both the projected cofactors, it is not necessary
to cover it in / (replaced by a don't care in /)

P-cIrRcuIT

A P-circuit of a completely specified function f is the circuit

P(f) =X f=+x " +f

Q /= fi—0Nflx=1

Q (fixmo\I) € = C fiuso
Q (fix=1\ /) C 7 C filoms
Q0 cC i cCi

Q P(f) =

Expressing Flexibility in Logic Synthesis by Boolean Relations

Minimization of P-circuits using Boolean Relation

Find the sets =, f7, f' leading to a P-circuit of minimal cost

e f:{0,1}" — {0,1} Re: {0,131 — {0,1}?
e Input set for R¢: all input variables but the critical signal x;

e Output set for Rs: all triple of functions =, f7, f' defining a P-circuit for f

Expressing Flexibility in Logic Synthesis by Boolean Relations

Minimization of P-circuits using Boolean Relation

Find the sets =, f7, f' leading to a P-circuit of minimal cost

e f:{0,1}" — {0,1} Re: {0,131 — {0,1}?
e Input set for R¢: all input variables but the critical signal x;

e Output set for Rs: all triple of functions =, f7, f' defining a P-circuit for f

X1 .. o Xi—1Xi+1...Xn Rf:(f:,f ,f’)
points in fi,—o \ / {100}
points in fj,—; \ / {010}
points in / {—-1,11-}
all other points {000}

Expressing Flexibility in Logic Synthesis by Boolean Relations

Minimization of P-circuits using Boolean Relation

Find the sets =, f7, f' leading to a P-circuit of minimal cost

e f:{0,1}" — {0,1} Re: {0,131 — {0,1}?
e Input set for R¢: all input variables but the critical signal x;

e Output set for Rs: all triple of functions =, f7, f' defining a P-circuit for f

X1 .. o Xi—1Xi+1...Xn Rf:(f:,f ,f’)
points in fi,—o \ / {100}
points in fj,—; \ / {010}
points in / {—-1,11-}
all other points {000}

THEOREM

P-circuit minimization for f

minimization of the Boolean relation R¢

P-circuits minimized with Boolean relations are more compact than P-circuits
expressed and minimized as incompletely specified functions

Expressing Flexibility in Logic Synthesis by Boolean Relations

Conclusions

e Boolean relations can be extremely useful for modeling
Boolean hard optimization problems
— with Boolean relations we can model problems that cannot
be completely described with incompletely specified functions

¢ Problem: scalability of the approach
— Boolean relation minimization is a very hard problem
— Boolean relation minimizers cannot handle relations with
many outputs

e Boolean relations have been successfully used in logic
synthesis to solve problems that can be cast as the
minimization of relations with a constant number of outputs
(2, 3)

Expressing Flexibility in Logic Synthesis by Boolean Relations

THANK YOU

ibility in Logic Synthesis by Boolean Relations

