
Expressing Flexibility in Logic Synthesis
by Boolean Relations

Anna Bernasconi
Università di Pisa, Italy

Expressing Flexibility in Logic Synthesis by Boolean Relations 1 / 29

Overview

• Classic applications

– Multilevel logic optimization

• Approximate Logic Synthesis

• Bounded-depth logic synthesis via Boolean relations

– Bi-decomposed Circuits
– Synthesis with critical signals: P-circuits

Expressing Flexibility in Logic Synthesis by Boolean Relations 2 / 29

Multilevel logic optimization

Given a multilevel logic network, obtain an equivalent representation of the
network, optimal w.r.t. a cost function involving area and delay

– identifying subnetworks to be optimized,
– deriving their flexibility
– and replacing such subnetworks by simpler, optimized ones

Single-output subnetworks

The flexibility for implementing the node’s function can be represented
by don’t cares

Multi-output subnetworks

Don’t cares are not sufficient for representing all the flexibility

Don’t care-based methods allow us to optimize only one
single-output subnetwork at a time

Boolean relations describe all the flexibility

Boolean relations allow the simultaneous modification of all nodes
of a subnetwork

Expressing Flexibility in Logic Synthesis by Boolean Relations 3 / 29

Multilevel logic optimization

Given a multilevel logic network, obtain an equivalent representation of the
network, optimal w.r.t. a cost function involving area and delay

– identifying subnetworks to be optimized,
– deriving their flexibility
– and replacing such subnetworks by simpler, optimized ones

Single-output subnetworks

The flexibility for implementing the node’s function can be represented
by don’t cares

Multi-output subnetworks

Don’t cares are not sufficient for representing all the flexibility

Don’t care-based methods allow us to optimize only one
single-output subnetwork at a time

Boolean relations describe all the flexibility

Boolean relations allow the simultaneous modification of all nodes
of a subnetwork

Expressing Flexibility in Logic Synthesis by Boolean Relations 3 / 29

Minimization of a two-bit adder due to the filtering effect
of a comparator [Brayton, Somenzi, 1989]

and so to change the SDC set?" The answer i s that the only
information which permits a transformation to change the
global function of the node is precisely the don't-care set
for the node defined over the primary inputs. In general,
besides the SDC, which i s the null set as seen from the pri-
mary inputs, there are external and observability don't-care
sets. However, many transformations in practice do not use
them. Formally, a transformation does not use a don't-care
set if the transformation remains invariant when the don't-
caresetsare reduced to$. In such acase,thetransformation
must leave the SDC invariant.

Since the don't-care sets for a Boolean network q are
specifications of a circuit, we can formally define a"circuit"
as an ordered pair (q , D), where q is a Boolean network and
D i s a vector of don't-care sets; D, is the don't-care set for
node f, on a network. D, i s equal to the union of the external
and observability don't-care sets of node f,.

A "transformation" 3 i s a mapping from a circuit (q , D)
to a new circuit (q', D'). In general, q f q' and D $ D'. In
this discussion, we consider only transformations where
the set of nodes i s preserved by the transformation.

A transformation 3 : (q , D) * (q', D') i s said to be "in-
variant" if for each node y,, the global function $of y, i s pre-
served. If the global function of each node is preserved,
then the SDC must be preserved. The key result on the pres-
ervation of these sets i s as follows.

Theorem V-6: Let 3(q, D) = (q', D') be any transformation
of a network. 3 is invariant iff for every 0 , 3 (q , 0) = (q', D")
(i.e., q' i s obtained independent of D).

Interestingly, this theorem implies that all the transfor-
mations within the MIS-II [I61 synthesis system, with the
sole exception of "node-simplify," do not change the SDC.
In particular, the forcing sets, used in global flow and other
applications, remain invariant under these transforma-
tions. Further, "node-simplify" does not change the SDC
unless external or observability don't-cares are used.

F. Hierarchy of Networks

Although don't cares are a powerful source of degrees
of freedom for optimizing a network, they do not and can-
not capture all the degrees of freedom. This observation [20]
has led to research on additional methods for describing
and using this flexibility.

1) Insufficiency of Don't Cares and Boolean Relations: In
a logic network specified by a hierarchy where one block
of logic feeds another, it has been observed that don't cares
are not sufficient for representing all the flexibility with
which each block can be simplified. An example is shown
in Fig. 12, where the first block, an adder, feeds its output

Comparator ,@,
Fig. 12. Hierarchical networr.

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS

to a comparator. We consider the effect on the minimi-
zation of the adder due to the filtering effect of the com-
parator.

The function of the comparator i s given by

z = 01

z = 00

z = 10

a + b c 3

(a + b = 3) v (a + b = 4)

a + b > 4.

Input values 000,001, and 010 are not distinguished by the
comparator; thus (000,001,010) formsan equivalenceclass.
Theother equivalenceclasses are (011,100) and (101,110,

This leads to a specification for the adder that takes
Ill).

account of this additional flexibility:

alaoblbo
0000
0001
0010
01 00
1000
001 1
0101
0110
1001
1010
1100
0111
1011
1101
1110
1111

x2x1 xn

{ 000,001,010)
(000, 001,010)
(000, 001, 010)
(000,001,010)
(000,001,010)
(011,100)
(000,001,010)
(011,100)
(011, 100)
(011, 100)
(011, 400)
(011,100)
(101,110,111)
(011,100)
(101,110,111)
(101,110,111)

This table is interpreted as a truth table where the set listed
to the right of an input miniterm is a l i s t of acceptable out-
puts of the implementation. This i s an exampleof a Boolean
relation which i s a generalization of a Boolean function. In
general, a "Boolean relation" is a one-to-many mapping; for
each input miniterm there can be more than oneacceptable
output pattern. A don't care on an output is a special case
of this. For example, for the miniterm 0000 in the example,
we could express one set of choices for the outputs as
00-, which says that the outputs could be either 000 or 001;
we don't care if output xo i s 0 or 1. However, this don't care
does not express that the output could also be 010. In fact,
there is no way to express the set (000,001,010) with only
output don't cares. In theexample, ifwe useonlydon'tcares
in the outputs, the best choice of don't cares, constrained
to include the normal adder as an acceptable implemen-
tation, leads to the minimized two-level function, as fol-
lows.

alaoblbo
11-0
-110
10-1
-01 1
-111
11-1
111-
1-1-

XZXlXO

01 1
01 1
01 1
01 1
100
100
01 0
100

289

and so to change the SDC set?" The answer i s that the only
information which permits a transformation to change the
global function of the node is precisely the don't-care set
for the node defined over the primary inputs. In general,
besides the SDC, which i s the null set as seen from the pri-
mary inputs, there are external and observability don't-care
sets. However, many transformations in practice do not use
them. Formally, a transformation does not use a don't-care
set if the transformation remains invariant when the don't-
caresetsare reduced to$. In such acase,thetransformation
must leave the SDC invariant.

Since the don't-care sets for a Boolean network q are
specifications of a circuit, we can formally define a"circuit"
as an ordered pair (q , D), where q is a Boolean network and
D i s a vector of don't-care sets; D, is the don't-care set for
node f, on a network. D, i s equal to the union of the external
and observability don't-care sets of node f,.

A "transformation" 3 i s a mapping from a circuit (q , D)
to a new circuit (q', D'). In general, q f q' and D $ D'. In
this discussion, we consider only transformations where
the set of nodes i s preserved by the transformation.

A transformation 3 : (q , D) * (q', D') i s said to be "in-
variant" if for each node y,, the global function $of y, i s pre-
served. If the global function of each node is preserved,
then the SDC must be preserved. The key result on the pres-
ervation of these sets i s as follows.

Theorem V-6: Let 3(q, D) = (q', D') be any transformation
of a network. 3 is invariant iff for every 0 , 3 (q , 0) = (q', D")
(i.e., q' i s obtained independent of D).

Interestingly, this theorem implies that all the transfor-
mations within the MIS-II [I61 synthesis system, with the
sole exception of "node-simplify," do not change the SDC.
In particular, the forcing sets, used in global flow and other
applications, remain invariant under these transforma-
tions. Further, "node-simplify" does not change the SDC
unless external or observability don't-cares are used.

F. Hierarchy of Networks

Although don't cares are a powerful source of degrees
of freedom for optimizing a network, they do not and can-
not capture all the degrees of freedom. This observation [20]
has led to research on additional methods for describing
and using this flexibility.

1) Insufficiency of Don't Cares and Boolean Relations: In
a logic network specified by a hierarchy where one block
of logic feeds another, it has been observed that don't cares
are not sufficient for representing all the flexibility with
which each block can be simplified. An example is shown
in Fig. 12, where the first block, an adder, feeds its output

Comparator ,@,
Fig. 12. Hierarchical networr.

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS

to a comparator. We consider the effect on the minimi-
zation of the adder due to the filtering effect of the com-
parator.

The function of the comparator i s given by

z = 01
z = 00
z = 10

a + b c 3

(a + b = 3) v (a + b = 4)

a + b > 4.

Input values 000,001, and 010 are not distinguished by the
comparator; thus (000,001,010) formsan equivalenceclass.
Theother equivalenceclasses are (011,100) and (101,110,

This leads to a specification for the adder that takes
Ill).

account of this additional flexibility:

alaoblbo
0000
0001
0010
01 00
1000
001 1
0101
0110
1001
1010
1100
0111
1011
1101
1110
1111

x2x1 xn

{ 000,001,010)
(000, 001,010)
(000, 001, 010)
(000,001,010)
(000,001,010)
(011,100)
(000,001,010)
(011,100)
(011, 100)
(011, 100)
(011, 400)
(011,100)
(101,110,111)
(011,100)
(101,110,111)
(101,110,111)

This table is interpreted as a truth table where the set listed
to the right of an input miniterm is a l i s t of acceptable out-
puts of the implementation. This i s an exampleof a Boolean
relation which i s a generalization of a Boolean function. In
general, a "Boolean relation" is a one-to-many mapping; for
each input miniterm there can be more than oneacceptable
output pattern. A don't care on an output is a special case
of this. For example, for the miniterm 0000 in the example,
we could express one set of choices for the outputs as
00-, which says that the outputs could be either 000 or 001;
we don't care if output xo i s 0 or 1. However, this don't care
does not express that the output could also be 010. In fact,
there is no way to express the set (000,001,010) with only
output don't cares. In theexample, ifwe useonlydon'tcares
in the outputs, the best choice of don't cares, constrained
to include the normal adder as an acceptable implemen-
tation, leads to the minimized two-level function, as fol-
lows.

alaoblbo
11-0
-110
10-1
-01 1
-111
11-1
111-
1-1-

XZXlXO

01 1
01 1
01 1
01 1
100
100
01 0
100

289

Input values can be partitioned into three equivalence classes:
Values less than 3: {000, 001, 010}
Values equal to 3 or 4: {011, 100}
Values greater than 4: {101, 110, 111}
The values in each class are not distinghished by the comparator

We can change the output value of the adder, to any other value in the same
equivalence class.

Boolean relation describing the flexible adder

a1 a0 b1 b0 x2 x1 x0

{0000, 0001, 0010, 0100, 1000, 0101} {000, 001, 010}
{0011, 0110, 1001, 1010, 1100, 0111, 1101} {011, 100}

{1011, 1110, 1111} {101, 110, 111}

Expressing Flexibility in Logic Synthesis by Boolean Relations 4 / 29

Minimization of a two-bit adder due to the filtering effect
of a comparator [Brayton, Somenzi, 1989]

and so to change the SDC set?" The answer i s that the only
information which permits a transformation to change the
global function of the node is precisely the don't-care set
for the node defined over the primary inputs. In general,
besides the SDC, which i s the null set as seen from the pri-
mary inputs, there are external and observability don't-care
sets. However, many transformations in practice do not use
them. Formally, a transformation does not use a don't-care
set if the transformation remains invariant when the don't-
caresetsare reduced to$. In such acase,thetransformation
must leave the SDC invariant.

Since the don't-care sets for a Boolean network q are
specifications of a circuit, we can formally define a"circuit"
as an ordered pair (q , D), where q is a Boolean network and
D i s a vector of don't-care sets; D, is the don't-care set for
node f, on a network. D, i s equal to the union of the external
and observability don't-care sets of node f,.

A "transformation" 3 i s a mapping from a circuit (q , D)
to a new circuit (q', D'). In general, q f q' and D $ D'. In
this discussion, we consider only transformations where
the set of nodes i s preserved by the transformation.

A transformation 3 : (q , D) * (q', D') i s said to be "in-
variant" if for each node y,, the global function $of y, i s pre-
served. If the global function of each node is preserved,
then the SDC must be preserved. The key result on the pres-
ervation of these sets i s as follows.

Theorem V-6: Let 3(q, D) = (q', D') be any transformation
of a network. 3 is invariant iff for every 0 , 3 (q , 0) = (q', D")
(i.e., q' i s obtained independent of D).

Interestingly, this theorem implies that all the transfor-
mations within the MIS-II [I61 synthesis system, with the
sole exception of "node-simplify," do not change the SDC.
In particular, the forcing sets, used in global flow and other
applications, remain invariant under these transforma-
tions. Further, "node-simplify" does not change the SDC
unless external or observability don't-cares are used.

F. Hierarchy of Networks

Although don't cares are a powerful source of degrees
of freedom for optimizing a network, they do not and can-
not capture all the degrees of freedom. This observation [20]
has led to research on additional methods for describing
and using this flexibility.

1) Insufficiency of Don't Cares and Boolean Relations: In
a logic network specified by a hierarchy where one block
of logic feeds another, it has been observed that don't cares
are not sufficient for representing all the flexibility with
which each block can be simplified. An example is shown
in Fig. 12, where the first block, an adder, feeds its output

Comparator ,@,
Fig. 12. Hierarchical networr.

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS

to a comparator. We consider the effect on the minimi-
zation of the adder due to the filtering effect of the com-
parator.

The function of the comparator i s given by

z = 01

z = 00

z = 10

a + b c 3

(a + b = 3) v (a + b = 4)

a + b > 4.

Input values 000,001, and 010 are not distinguished by the
comparator; thus (000,001,010) formsan equivalenceclass.
Theother equivalenceclasses are (011,100) and (101,110,

This leads to a specification for the adder that takes
Ill).

account of this additional flexibility:

alaoblbo
0000
0001
0010
01 00
1000
001 1
0101
0110
1001
1010
1100
0111
1011
1101
1110
1111

x2x1 xn

{ 000,001,010)
(000, 001,010)
(000, 001, 010)
(000,001,010)
(000,001,010)
(011,100)
(000,001,010)
(011,100)
(011, 100)
(011, 100)
(011, 400)
(011,100)
(101,110,111)
(011,100)
(101,110,111)
(101,110,111)

This table is interpreted as a truth table where the set listed
to the right of an input miniterm is a l i s t of acceptable out-
puts of the implementation. This i s an exampleof a Boolean
relation which i s a generalization of a Boolean function. In
general, a "Boolean relation" is a one-to-many mapping; for
each input miniterm there can be more than oneacceptable
output pattern. A don't care on an output is a special case
of this. For example, for the miniterm 0000 in the example,
we could express one set of choices for the outputs as
00-, which says that the outputs could be either 000 or 001;
we don't care if output xo i s 0 or 1. However, this don't care
does not express that the output could also be 010. In fact,
there is no way to express the set (000,001,010) with only
output don't cares. In theexample, ifwe useonlydon'tcares
in the outputs, the best choice of don't cares, constrained
to include the normal adder as an acceptable implemen-
tation, leads to the minimized two-level function, as fol-
lows.

alaoblbo
11-0
-110
10-1
-01 1
-111
11-1
111-
1-1-

XZXlXO

01 1
01 1
01 1
01 1
100
100
01 0
100

289

and so to change the SDC set?" The answer i s that the only
information which permits a transformation to change the
global function of the node is precisely the don't-care set
for the node defined over the primary inputs. In general,
besides the SDC, which i s the null set as seen from the pri-
mary inputs, there are external and observability don't-care
sets. However, many transformations in practice do not use
them. Formally, a transformation does not use a don't-care
set if the transformation remains invariant when the don't-
caresetsare reduced to$. In such acase,thetransformation
must leave the SDC invariant.

Since the don't-care sets for a Boolean network q are
specifications of a circuit, we can formally define a"circuit"
as an ordered pair (q , D), where q is a Boolean network and
D i s a vector of don't-care sets; D, is the don't-care set for
node f, on a network. D, i s equal to the union of the external
and observability don't-care sets of node f,.

A "transformation" 3 i s a mapping from a circuit (q , D)
to a new circuit (q', D'). In general, q f q' and D $ D'. In
this discussion, we consider only transformations where
the set of nodes i s preserved by the transformation.

A transformation 3 : (q , D) * (q', D') i s said to be "in-
variant" if for each node y,, the global function $of y, i s pre-
served. If the global function of each node is preserved,
then the SDC must be preserved. The key result on the pres-
ervation of these sets i s as follows.

Theorem V-6: Let 3(q, D) = (q', D') be any transformation
of a network. 3 is invariant iff for every 0 , 3 (q , 0) = (q', D")
(i.e., q' i s obtained independent of D).

Interestingly, this theorem implies that all the transfor-
mations within the MIS-II [I61 synthesis system, with the
sole exception of "node-simplify," do not change the SDC.
In particular, the forcing sets, used in global flow and other
applications, remain invariant under these transforma-
tions. Further, "node-simplify" does not change the SDC
unless external or observability don't-cares are used.

F. Hierarchy of Networks

Although don't cares are a powerful source of degrees
of freedom for optimizing a network, they do not and can-
not capture all the degrees of freedom. This observation [20]
has led to research on additional methods for describing
and using this flexibility.

1) Insufficiency of Don't Cares and Boolean Relations: In
a logic network specified by a hierarchy where one block
of logic feeds another, it has been observed that don't cares
are not sufficient for representing all the flexibility with
which each block can be simplified. An example is shown
in Fig. 12, where the first block, an adder, feeds its output

Comparator ,@,
Fig. 12. Hierarchical networr.

BRAYTON et al.: MULTILEVEL LOGIC SYNTHESIS

to a comparator. We consider the effect on the minimi-
zation of the adder due to the filtering effect of the com-
parator.

The function of the comparator i s given by

z = 01
z = 00
z = 10

a + b c 3

(a + b = 3) v (a + b = 4)

a + b > 4.

Input values 000,001, and 010 are not distinguished by the
comparator; thus (000,001,010) formsan equivalenceclass.
Theother equivalenceclasses are (011,100) and (101,110,

This leads to a specification for the adder that takes
Ill).

account of this additional flexibility:

alaoblbo
0000
0001
0010
01 00
1000
001 1
0101
0110
1001
1010
1100
0111
1011
1101
1110
1111

x2x1 xn

{ 000,001,010)
(000, 001,010)
(000, 001, 010)
(000,001,010)
(000,001,010)
(011,100)
(000,001,010)
(011,100)
(011, 100)
(011, 100)
(011, 400)
(011,100)
(101,110,111)
(011,100)
(101,110,111)
(101,110,111)

This table is interpreted as a truth table where the set listed
to the right of an input miniterm is a l i s t of acceptable out-
puts of the implementation. This i s an exampleof a Boolean
relation which i s a generalization of a Boolean function. In
general, a "Boolean relation" is a one-to-many mapping; for
each input miniterm there can be more than oneacceptable
output pattern. A don't care on an output is a special case
of this. For example, for the miniterm 0000 in the example,
we could express one set of choices for the outputs as
00-, which says that the outputs could be either 000 or 001;
we don't care if output xo i s 0 or 1. However, this don't care
does not express that the output could also be 010. In fact,
there is no way to express the set (000,001,010) with only
output don't cares. In theexample, ifwe useonlydon'tcares
in the outputs, the best choice of don't cares, constrained
to include the normal adder as an acceptable implemen-
tation, leads to the minimized two-level function, as fol-
lows.

alaoblbo
11-0
-110
10-1
-01 1
-111
11-1
111-
1-1-

XZXlXO

01 1
01 1
01 1
01 1
100
100
01 0
100

289

Input values can be partitioned into three equivalence classes:
Values less than 3: {000, 001, 010}
Values equal to 3 or 4: {011, 100}
Values greater than 4: {101, 110, 111}
The values in each class are not distinghished by the comparator

We can change the output value of the adder, to any other value in the same
equivalence class.

Boolean relation describing the flexible adder

a1 a0 b1 b0 x2 x1 x0

{0000, 0001, 0010, 0100, 1000, 0101} {000, 001, 010}
{0011, 0110, 1001, 1010, 1100, 0111, 1101} {011, 100}

{1011, 1110, 1111} {101, 110, 111}

Expressing Flexibility in Logic Synthesis by Boolean Relations 4 / 29

Minimization of a two-bit adder due to the filtering effect
of a comparator [Brayton, Somenzi, 1989]

Minimization with don’t cares
including the normal adder as an
acceptable implementation

a1 a0 b1 b0 x2 x1 x0

1 1 - 0 0 1 1
- 1 1 0 0 1 1
1 0 - 1 0 1 1
- 0 1 1 0 1 1
- 1 1 1 1 0 0
1 1 - 1 1 0 0
1 1 1 - 0 1 0
1 - 1 - 1 0 0

Minimization of the Boolean relation
much simpler minimum solution

a1 a0 b1 b0 x2 x1 x0

0 - 1 - 0 1 0
1 - 0 - 0 1 0
1 - 1 - 1 0 0
- - - 1 0 0 1
- 1 - - 0 0 1

Expressing Flexibility in Logic Synthesis by Boolean Relations 5 / 29

Approximate Logic Synthesis (ALS)

• Exploit error tolerance of applications to implement approximate
designs with

– smaller area
– smaller delay
– or lower energy consumption

• Modify some outputs of a function, so that the produced error is
tolerable

Error frequency

number of minterms on which an error
occurs, as a fraction of the total
number of minterms

Error magnitude

maximum amount by which the
numerical value at the outputs of a
function can deviate from the exact
value

Expressing Flexibility in Logic Synthesis by Boolean Relations 6 / 29

Approximate Logic Synthesis (ALS)

• Exploit error tolerance of applications to implement approximate
designs with

– smaller area
– smaller delay
– or lower energy consumption

• Modify some outputs of a function, so that the produced error is
tolerable

Error frequency

number of minterms on which an error
occurs, as a fraction of the total
number of minterms

Error magnitude

maximum amount by which the
numerical value at the outputs of a
function can deviate from the exact
value

Expressing Flexibility in Logic Synthesis by Boolean Relations 6 / 29

ALS and Boolean Relations

[Miao, Gerstlauer, Orshansky, 2013]:

• ALS under arbitrary error magnitude and error frequency constraints

• Two-level logic minimization algorithm, two-phase approach:

1 derive the solution of the problem constrained only by the magnitude
of errors

→ expressed and solved using Boolean relations

2 the solution is iteratively refined to meet the original error frequency
constraint

Expressing Flexibility in Logic Synthesis by Boolean Relations 7 / 29

ALS and Boolean Relations

[Miao, Gerstlauer, Orshansky, 2013]:

• ALS under arbitrary error magnitude and error frequency constraints

• Two-level logic minimization algorithm, two-phase approach:

1 derive the solution of the problem constrained only by the magnitude
of errors → expressed and solved using Boolean relations

2 the solution is iteratively refined to meet the original error frequency
constraint

Expressing Flexibility in Logic Synthesis by Boolean Relations 7 / 29

ALS constrained by Error Magnitude only

• Multi-output function f : {0, 1}n → {0, 1}k

• M: constrain on the magnitude of possible errors

Problem

Find f ′ : {0, 1}n → {0, 1}k of minimal cost s.t.

∀x ∈ {0, 1}n |f (x)− f ′(x)| ≤ M

• ∀x ∈ {0, 1}n, e(x) = output error set for x

additional values that the function can take while satisfying the error
magnitude constraint

Rf ′(x) ∈ {f (x) ∪ e(x)}
each input corresponds to more than one output: f ′ becomes a
Boolean relation Rf ′

⇒ minimize the Boolean relation Rf ′ , under a given metric (i.e., the
number of literals in a SOP representation)

Expressing Flexibility in Logic Synthesis by Boolean Relations 8 / 29

ALS constrained by Error Magnitude only

• Multi-output function f : {0, 1}n → {0, 1}k

• M: constrain on the magnitude of possible errors

Problem

Find f ′ : {0, 1}n → {0, 1}k of minimal cost s.t.

∀x ∈ {0, 1}n |f (x)− f ′(x)| ≤ M

• ∀x ∈ {0, 1}n, e(x) = output error set for x

additional values that the function can take while satisfying the error
magnitude constraint

Rf ′(x) ∈ {f (x) ∪ e(x)}
each input corresponds to more than one output: f ′ becomes a
Boolean relation Rf ′

⇒ minimize the Boolean relation Rf ′ , under a given metric (i.e., the
number of literals in a SOP representation)

Expressing Flexibility in Logic Synthesis by Boolean Relations 8 / 29

Example

Adder

x1 x2 f (x1, x2)
0 0 00
0 1 01
1 0 01
1 1 10

L(f) = 6

SOP(f (1)) = x1x2
SOP(f (2)) = x1x2 + x1x2

Adder, M = 1

x1 x2 Rf ′(x1, x2)
0 0 {00, 01}

X

0 1 {01, 00, 10}
1 0 {01, 00, 10}
1 1 {10, 01, 11}

X

L(f ′) = 0

SOP(f (1)) = 0

SOP(f (2)) = 1

Error frequency: 50 %

Expressing Flexibility in Logic Synthesis by Boolean Relations 9 / 29

Example

Adder

x1 x2 f (x1, x2)
0 0 00
0 1 01
1 0 01
1 1 10

L(f) = 6

SOP(f (1)) = x1x2
SOP(f (2)) = x1x2 + x1x2

Adder, M = 1

x1 x2 Rf ′(x1, x2)
0 0 {00, 01}

X

0 1 {01, 00, 10}
1 0 {01, 00, 10}
1 1 {10, 01, 11}

X

L(f ′) = 0

SOP(f (1)) = 0

SOP(f (2)) = 1

Error frequency: 50 %

Expressing Flexibility in Logic Synthesis by Boolean Relations 9 / 29

Example

Adder

x1 x2 f (x1, x2)
0 0 00
0 1 01
1 0 01
1 1 10

L(f) = 6

SOP(f (1)) = x1x2
SOP(f (2)) = x1x2 + x1x2

Adder, M = 1

x1 x2 Rf ′(x1, x2)
0 0 {00, 01}

X

0 1 {01, 00, 10}
1 0 {01, 00, 10}
1 1 {10, 01, 11}

X

L(f ′) = 0

SOP(f (1)) = 0

SOP(f (2)) = 1

Error frequency: 50 %

Expressing Flexibility in Logic Synthesis by Boolean Relations 9 / 29

Example

Adder

x1 x2 f (x1, x2)
0 0 00
0 1 01
1 0 01
1 1 10

L(f) = 6

SOP(f (1)) = x1x2
SOP(f (2)) = x1x2 + x1x2

Adder, M = 1

x1 x2 Rf ′(x1, x2)
0 0 {00, 01} X
0 1 {01, 00, 10}
1 0 {01, 00, 10}
1 1 {10, 01, 11} X

L(f ′) = 0

SOP(f (1)) = 0

SOP(f (2)) = 1

Error frequency: 50 %

Expressing Flexibility in Logic Synthesis by Boolean Relations 9 / 29

Frequency constrained ALS algorithm

• The BR solution may not satisfy the constrain on error frequency

• Iterative and greedy algorithm for systematically corrects the
wrong outputs (leading to the smallest cost increase) until the
error frequency constraint is met

Error frequency: 25 %

x1 x2 f (x1, x2) Rf ′(x1, x2)

0 0 00 {00, 01}

X

0 1 01 {01, 00, 10}
1 0 01 {01, 00, 10}
1 1 10 {10, 01, 11} X

L(f ′) = 2

SOP(f (1)) = 0

SOP(f (2)) = x1 + x2

Expressing Flexibility in Logic Synthesis by Boolean Relations 10 / 29

Frequency constrained ALS algorithm

• The BR solution may not satisfy the constrain on error frequency

• Iterative and greedy algorithm for systematically corrects the
wrong outputs (leading to the smallest cost increase) until the
error frequency constraint is met

Error frequency: 25 %

x1 x2 f (x1, x2) Rf ′(x1, x2)

0 0 00 {00, 01} X
0 1 01 {01, 00, 10}
1 0 01 {01, 00, 10}
1 1 10 {10, 01, 11} X

L(f ′) = 2

SOP(f (1)) = 0

SOP(f (2)) = x1 + x2

Expressing Flexibility in Logic Synthesis by Boolean Relations 10 / 29

Frequency constrained ALS algorithm

• The BR solution may not satisfy the constrain on error frequency

• Iterative and greedy algorithm for systematically corrects the
wrong outputs (leading to the smallest cost increase) until the
error frequency constraint is met

Error frequency: 25 %

x1 x2 f (x1, x2) Rf ′(x1, x2)

0 0 00 {00, 01}

X

0 1 01 {01, 00, 10}
1 0 01 {01, 00, 10}
1 1 10 {10, 01, 11} X

L(f ′) = 2

SOP(f (1)) = 0

SOP(f (2)) = x1 + x2

Expressing Flexibility in Logic Synthesis by Boolean Relations 10 / 29

Bounded-depth logic synthesis via Boolean relations: Bi-Decomposition

(joint work with R. K. Brayton, V.Ciriani, G. Trucco, and T. Villa)

f : {0, 1}n → {0, 1,−}

f = (fon, fdc , foff) can be covered with

→ a SOP derived by the on-set (+ some dc-points)

→ a POS resulting from the complement of a SOP for the
off-set (+ some dc-points)

? Which one gives the best cover, the SOP or the POS form?

? Can we study a form that is part in SOP and part in POS
form, and is better than both?

We propose a bi-decomposed form that is part in

SOP form and part in POS

fB = f0 op f1

Expressing Flexibility in Logic Synthesis by Boolean Relations 11 / 29

Bounded-depth logic synthesis via Boolean relations: Bi-Decomposition

(joint work with R. K. Brayton, V.Ciriani, G. Trucco, and T. Villa)

f : {0, 1}n → {0, 1,−}

f = (fon, fdc , foff) can be covered with

→ a SOP derived by the on-set (+ some dc-points)

→ a POS resulting from the complement of a SOP for the
off-set (+ some dc-points)

? Which one gives the best cover, the SOP or the POS form?

? Can we study a form that is part in SOP and part in POS
form, and is better than both?

We propose a bi-decomposed form that is part in

SOP form and part in POS

fB = f0 op f1

Expressing Flexibility in Logic Synthesis by Boolean Relations 11 / 29

Bounded-depth logic synthesis via Boolean relations:
Bi-Decomposition

00

10

11

01

00

10
11
01

1
1

1
1

1

1

1

0

0
0
0
0

1
1
 1

x
1
x
2

x

3

x

4

(a) f

0

00

10

11

01

00

10
11
01

1
1

1
1

1

1

1

0

0
0
0
0

1
1
 1

x
1
x
2

x
3
x
4

(b) SOP for f

0

00

10

11

01

00

10
11
01

1
1

1
1

1

1

1

0

0
0
0
0

1
1
 1

x
1
x
2

x
3
x
4

(c) POS for f

0

00

10

11

01

00

10
11
01

1
1

1
1

1

1

1

0

0
0
0
0

1
1
 1

x

1

x

2

x
3
x
4

(d) Bi-cond. form for f

0

• fSOP = f SOP
1 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 10 literals

• fPOS = f
POS

0 = (x1 + x2)(x1 + x3 + x4)(x2 + x3 + x4) 8 literals

• fB = f 0 + f1 = ((x1 + x2)(x3 + x4)) + x1x2 6 literals

1000 is in the the OFF set of f 0 and in the ON set of f1
thus is in the ON set of the f 0 + f1

Expressing Flexibility in Logic Synthesis by Boolean Relations 12 / 29

Bounded-depth logic synthesis via Boolean relations:
Bi-Decomposition

00

10

11

01

00

10
11
01

1
1

1
1

1

1

1

0

0
0
0
0

1
1
 1

x
1
x
2

x

3

x

4

(a) f

0

00

10

11

01

00

10
11
01

1
1

1
1

1

1

1

0

0
0
0
0

1
1
 1

x
1
x
2

x
3
x
4

(b) SOP for f

0

00

10

11

01

00

10
11
01

1
1

1
1

1

1

1

0

0
0
0
0

1
1
 1

x
1
x
2

x
3
x
4

(c) POS for f

0

00

10

11

01

00

10
11
01

1
1

1
1

1

1

1

0

0
0
0
0

1
1
 1

x

1

x

2

x
3
x
4

(d) Bi-cond. form for f

0

• fSOP = f SOP
1 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 10 literals

• fPOS = f
POS

0 = (x1 + x2)(x1 + x3 + x4)(x2 + x3 + x4) 8 literals

• fB = f 0 + f1 = ((x1 + x2)(x3 + x4)) + x1x2 6 literals

1000 is in the the OFF set of f 0 and in the ON set of f1
thus is in the ON set of the f 0 + f1

Expressing Flexibility in Logic Synthesis by Boolean Relations 12 / 29

Synthesis of Bi-decomposed Circuits and Boolean relations

f : {0, 1}n → {0, 1,−}, f = u op v u ← f0, v ← f1

Inputs of u and v : the same as the inputs of f : x1, . . . , xn

Output: is the output that op takes on u(x1, . . . , xn) and v(x1, . . . , xn)

AND group

u v AND
u v 6⇐
u v 6⇒
u v NOR

OR group

u + v OR
u + v ⇒
u + v ⇐
u + v NAND

XOR group

u ⊕ v XOR
u ⊕ v XNOR

• The two-input operator induces flexibility that cannot be expressed exactly by don’t
care conditions only: a Boolean relation is required

• For each binary op, we define Rop : {0, 1}n → {0, 1}2 s.t.

– the set of functions compatible with Rop corresponds to the set of pairs (u, v)
occurring in all bi-decomposed circuit implementations of f w.r.t. op.

– an optimal solution of Rop is an optimal bi-decomposed circuit for f

Expressing Flexibility in Logic Synthesis by Boolean Relations 13 / 29

Synthesis of Bi-decomposed Circuits and Boolean relations

f : {0, 1}n → {0, 1,−}, f = u op v u ← f0, v ← f1

Inputs of u and v : the same as the inputs of f : x1, . . . , xn

Output: is the output that op takes on u(x1, . . . , xn) and v(x1, . . . , xn)

AND group

u v AND
u v 6⇐
u v 6⇒
u v NOR

OR group

u + v OR
u + v ⇒
u + v ⇐
u + v NAND

XOR group

u ⊕ v XOR
u ⊕ v XNOR

• The two-input operator induces flexibility that cannot be expressed exactly by don’t
care conditions only: a Boolean relation is required

• For each binary op, we define Rop : {0, 1}n → {0, 1}2 s.t.

– the set of functions compatible with Rop corresponds to the set of pairs (u, v)
occurring in all bi-decomposed circuit implementations of f w.r.t. op.

– an optimal solution of Rop is an optimal bi-decomposed circuit for f

Expressing Flexibility in Logic Synthesis by Boolean Relations 13 / 29

Synthesis of Bi-decomposed Circuits and Boolean relations

f : {0, 1}n → {0, 1,−}, f = u op v u ← f0, v ← f1

Inputs of u and v : the same as the inputs of f : x1, . . . , xn

Output: is the output that op takes on u(x1, . . . , xn) and v(x1, . . . , xn)

AND group

u v AND
u v 6⇐
u v 6⇒
u v NOR

OR group

u + v OR
u + v ⇒
u + v ⇐
u + v NAND

XOR group

u ⊕ v XOR
u ⊕ v XNOR

• The two-input operator induces flexibility that cannot be expressed exactly by don’t
care conditions only: a Boolean relation is required

• For each binary op, we define Rop : {0, 1}n → {0, 1}2 s.t.

– the set of functions compatible with Rop corresponds to the set of pairs (u, v)
occurring in all bi-decomposed circuit implementations of f w.r.t. op.

– an optimal solution of Rop is an optimal bi-decomposed circuit for f

Expressing Flexibility in Logic Synthesis by Boolean Relations 13 / 29

Construction of ROR

f 0 f 1

x 1 …

… …

f(x 1 , …, x n)

x 2 x n

v

u

f 0 f 1

x 1 …

… …

f(x 1 , …, x n)

x 2 x n

v

u

• ∀ x ∈ fon, x must be associated to one of the three output
values on which u + v evaluates to 1

ROR (x) = {01, 10, 11} = {1−,−1}

• ∀ x ∈ foff , x must be associated to the output 00 on which
u + v evaluates to 0

ROR (x) = 00

• ∀ x ∈ fdc , x can be associated to any output

ROR (x) = {−−}

Expressing Flexibility in Logic Synthesis by Boolean Relations 14 / 29

Construction of Rop

AND table
RAND R6⇐ RNOR R 6⇒

x ∈ fon {11} {01} {00} {10}
x ∈ foff {0−,−0} {1−,−0} {1−,−1} {0−,−1}
x ∈ fdc {−−} {−−} {−−} {−−}

OR table
ROR R⇒ RNAND R⇐

x ∈ fon {1−,−1} {0−,−1} {0−,−0} {1−,−0}
x ∈ foff {00} {10} {11} {01}
x ∈ fdc {−−} {−−} {−−} {−−}

XOR table
RXNOR RXOR

x ∈ fon {00, 11} {01, 10}
x ∈ foff {01, 10} {00, 11}
x ∈ fdc {−−} {−−}

Expressing Flexibility in Logic Synthesis by Boolean Relations 15 / 29

Construction of Rop

The three tables are distinguished by whether

• the offset is partitioned (AND group)

• the onset is partitioned (OR group)

• or both are partitioned (XOR group)

How this partitioning is done is task of the Boolean relation
minimizer

Bi-decomposed circuit minimization problem
⇐⇒

problem of finding an optimal implementation of Rop

Good gains in a majority of benchmarks against affordable
increases in synthesis time

Expressing Flexibility in Logic Synthesis by Boolean Relations 16 / 29

Construction of Rop

The three tables are distinguished by whether

• the offset is partitioned (AND group)

• the onset is partitioned (OR group)

• or both are partitioned (XOR group)

How this partitioning is done is task of the Boolean relation
minimizer

Bi-decomposed circuit minimization problem
⇐⇒

problem of finding an optimal implementation of Rop

Good gains in a majority of benchmarks against affordable
increases in synthesis time

Expressing Flexibility in Logic Synthesis by Boolean Relations 16 / 29

Synthesis with critical signals: P-circuits
(joint work with V. Ciriani, G. Trucco, and T. Villa)

Scenario
• Logic synthesis in presence of critical signals that should be moved

toward the output

• signals with high switching activity
→ for decreasing power consumption

• late arriving signals
→ for decreasing circuit delay

Problem
Restructure (or synthesize) a circuit in order to move critical signals
near to the output (decreasing the cone of influence)

– minimizing the circuit area

– keeping the number of levels bounded

– performing an efficient minimization

Expressing Flexibility in Logic Synthesis by Boolean Relations 17 / 29

Synthesis with critical signals: P-circuits
(joint work with V. Ciriani, G. Trucco, and T. Villa)

Scenario
• Logic synthesis in presence of critical signals that should be moved

toward the output

• signals with high switching activity
→ for decreasing power consumption

• late arriving signals
→ for decreasing circuit delay

Problem
Restructure (or synthesize) a circuit in order to move critical signals
near to the output (decreasing the cone of influence)

– minimizing the circuit area

– keeping the number of levels bounded

– performing an efficient minimization

Expressing Flexibility in Logic Synthesis by Boolean Relations 17 / 29

Simple solution: Shannon decomposition

• x is the critical signal

f = x f|x=0 + x f|x=1

• the cofactors f|x=0 and f|x=1 do not depend on x

• x is near to the output

mapped network of Figure 11 (a). Notice that the binding cannot be
improved with Boolean methods using don’t cares because the external
don’t care set is empty and the XOR on the output does not introduce any
ODC on its fan-ins. We apply generalized matching to the multioutput
cluster function consisting of the first XOR and the AND (enclosed in the
dashed box f). The number of control variables needed is Nc !
2"⎡log24⎤# 1 # 2⎡log23⎤ # 2$! 18. Applying generalized matching

and examining the cost of the solutions (i.e., the ON-set of M"c$), we find
that WIRE on output 1 and AND1 on output 2 is a correct replacement. The
final solution is shown in Figure 11(b). The reader can verify its correctness
by inspection. The optimized network has a lower cost and is fan-out-free.
Notice that this replacement could not have been found with traditional
matching, even with don’t cares, unless resorting to technology-indepen-
dent optimizations.

We consider next the application of generalized matching to binding
multiple-output cells, which are common in many semicustom libraries
(e.g., full adders, decoders). Multiple-output cells implement multiple-
output pattern functions over the same set of inputs. As a result, the
variable assignment used in matching must be the same for all components
of the pattern function. This constraint has a beneficial effect in reducing
the number of control variables. Namely: Nc ! no"⎡log2 NlibOut⎤ #

1$# mmax ⎡log2n⎤ # mmax. The first term accounts for the no output

multiplexer functions (with output polarity assignment). NlibOut is the total
number of outputs of all multioutput library cells. The second and third
terms account for the input permutations and polarity assignments.

Example 22. Consider a multioutput cell implementing a single-bit full
adder. The cell has three inputs: a, b, and cin and two outputs sum and
cout. The quotient function for the full adder is shown as a block diagram in

Fig. 11. An example of the effectiveness of generalized matching.

222 • Luca Benini and Giovanni De Micheli

ACM Transactions on Design Automation of Electronic Systems, Vol. 2, No. 3, July 1997.

LIBRARY
two-input XOR (Cost 2)
two-input AND (Cost 2)
NOT (Cost 1)
WIRE (Cost 0)

Multioutput cluster function

x

fx

fx

Expressing Flexibility in Logic Synthesis by Boolean Relations 18 / 29

Problem of Shannon approach

x3 x4
x1 x2

00

01

11

10

00 01 11 10

0

1

0

10

00

0

0

1 0

1 1 1

1

1

x3 x4x1 = 0

0

1

00 01 11 10

1 10

00

0

1 0

x3 x4
x1 = 1

0

1

00 01 11 10

0 10

11

0

1 1

x2

x2

Let x = x1

Expressing Flexibility in Logic Synthesis by Boolean Relations 19 / 29

Problem of Shannon approach

x3 x4
x1 x2

00

01

11

10

00 01 11 10

0

1

0

10

00

0

0

1 0

1 1 1

1

1

x3 x4x1 = 0

0

1

00 01 11 10

1 10

00

0

1 0

x3 x4
x1 = 1

0

1

00 01 11 10

0 10

11

0

1 1

x2

x2

Let x = x1

two cubes

It is not a compact representation

Expressing Flexibility in Logic Synthesis by Boolean Relations 20 / 29

Decomposition with intersection

• try not to split the cubes

• let the critical signal near to the output

Idea
• the cubes that do not depend on x and cross the two sets

are not projected

• how to identify these cubes?

They are in the intersection between the two cofactors

I = f|xi=0 ∩ f|xi=1

• keep I unprojected, and project only the minterms in
f|x1=0 \ I and f|xi=1 \ I

Expressing Flexibility in Logic Synthesis by Boolean Relations 21 / 29

Decomposition with intersection

• try not to split the cubes

• let the critical signal near to the output

Idea
• the cubes that do not depend on x and cross the two sets

are not projected

• how to identify these cubes?

They are in the intersection between the two cofactors

I = f|xi=0 ∩ f|xi=1

• keep I unprojected, and project only the minterms in
f|x1=0 \ I and f|xi=1 \ I

Expressing Flexibility in Logic Synthesis by Boolean Relations 21 / 29

Example

x3 x4

0

1

00 01 11 10

1 10

00 1 0

x3 x4

0

1

00 01 11 10

0 10

11

0

1 1

x2

x2

0

x3 x4

0

1

00 01 11 10

0 10

00 1 0

x2

0
Intersection

x1 = 0

x1 = 1

x3 x4
x1 x2

00

01

11

10

00 01 11 10

0

1

0

10

00

0

0

1 0

1 1 1

1

1

x = x1

Expressing Flexibility in Logic Synthesis by Boolean Relations 22 / 29

Example

x3 x4

0

1

00 01 11 10

1 00

00 0 0

x3 x4

0

1

00 01 11 10

0 00

11

0

0 1

x2

x2

0

x3 x4

0

1

00 01 11 10

0 10

00 1 0

x2

0
Intersection

x1 = 0

x1 = 1

x3 x4
x1 x2

00

01

11

10

00 01 11 10

0

1

0

10

00

0

0

1 0

1 1 1

1

1

We can remove the
points of the intersection

But some cubes
could be split!

Expressing Flexibility in Logic Synthesis by Boolean Relations 23 / 29

Example

x3 x4

0

1

00 01 11 10

1 -0

00 - 0

x3 x4

0

1

00 01 11 10

0 -0

11

0

- 1

x2

x2

0

x3 x4

0

1

00 01 11 10

0 10

00 1 0

x2

0
Intersection

x1 = 0

x1 = 1

x3 x4
x1 x2

00

01

11

10

00 01 11 10

0

1

0

10

00

0

0

1 0

1 1 1

1

1

We insert don’t cares instead
to the points of the intersection

Expressing Flexibility in Logic Synthesis by Boolean Relations 24 / 29

Example

x3 x4
x1 x2

00

01

11

10

00 01 11 10

0

1

0

10

00

0

0

1 0

1 1 1

1

1

x3 x4

0

1

00 01 11 10

1 10

00 0 0

x3 x4

0

1

00 01 11 10

0 00

11

0

1 1

x2

x2

0

x1 = 0

x1 = 1

x3 x4

0

1

00 01 11 10

0 10

00 1 0

x2

0
Intersection

Decomposition with intersection

The cubes are
not split

Expressing Flexibility in Logic Synthesis by Boolean Relations 25 / 29

P-circuits for completely specified functions

• if a point is in I and is useful for a better minimization of f|xi=0 and f|xi=1,
it can be kept both in the cofactors and in the intersection

• if a point is covered in both the projected cofactors, it is not necessary
to cover it in I (replaced by a don’t care in I)

P-circuit
A P-circuit of a completely specified function f is the circuit

P(f) = x i f
= + xi f

6= + f I

1 I = f|xi=0 ∩ f|xi=1

2 (f|xi=0 \ I) ⊆ f = ⊆ f|xi=0

3 (f|xi=1 \ I) ⊆ f 6= ⊆ f|xi=1

4 ∅ ⊆ f I ⊆ I

5 P(f) = f

Expressing Flexibility in Logic Synthesis by Boolean Relations 26 / 29

P-circuits for completely specified functions

• if a point is in I and is useful for a better minimization of f|xi=0 and f|xi=1,
it can be kept both in the cofactors and in the intersection

• if a point is covered in both the projected cofactors, it is not necessary
to cover it in I (replaced by a don’t care in I)

P-circuit
A P-circuit of a completely specified function f is the circuit

P(f) = x i f
= + xi f

6= + f I

1 I = f|xi=0 ∩ f|xi=1

2 (f|xi=0 \ I) ⊆ f = ⊆ f|xi=0

3 (f|xi=1 \ I) ⊆ f 6= ⊆ f|xi=1

4 ∅ ⊆ f I ⊆ I

5 P(f) = f

Expressing Flexibility in Logic Synthesis by Boolean Relations 26 / 29

Minimization of P-circuits using Boolean Relation

Find the sets f =, f 6=, f I leading to a P-circuit of minimal cost

• f : {0, 1}n → {0, 1} Rf : {0, 1}n−1 → {0, 1}3

• Input set for Rf : all input variables but the critical signal xi

• Output set for Rf : all triple of functions f =, f 6=, f I defining a P-circuit for f

x1 . . . xi−1xi+1 . . . xn Rf = (f =, f 6=, f I)

points in f|xi=0 \ I {100}
points in f|xi=1 \ I {010}
points in I {− − 1, 11−}
all other points {000}

Theorem
P-circuit minimization for f⇐⇒

minimization of the Boolean relation Rf

P-circuits minimized with Boolean relations are more compact than P-circuits

expressed and minimized as incompletely specified functions

Expressing Flexibility in Logic Synthesis by Boolean Relations 27 / 29

Minimization of P-circuits using Boolean Relation

Find the sets f =, f 6=, f I leading to a P-circuit of minimal cost

• f : {0, 1}n → {0, 1} Rf : {0, 1}n−1 → {0, 1}3

• Input set for Rf : all input variables but the critical signal xi

• Output set for Rf : all triple of functions f =, f 6=, f I defining a P-circuit for f

x1 . . . xi−1xi+1 . . . xn Rf = (f =, f 6=, f I)

points in f|xi=0 \ I {100}
points in f|xi=1 \ I {010}
points in I {− − 1, 11−}
all other points {000}

Theorem
P-circuit minimization for f⇐⇒

minimization of the Boolean relation Rf

P-circuits minimized with Boolean relations are more compact than P-circuits

expressed and minimized as incompletely specified functions

Expressing Flexibility in Logic Synthesis by Boolean Relations 27 / 29

Minimization of P-circuits using Boolean Relation

Find the sets f =, f 6=, f I leading to a P-circuit of minimal cost

• f : {0, 1}n → {0, 1} Rf : {0, 1}n−1 → {0, 1}3

• Input set for Rf : all input variables but the critical signal xi

• Output set for Rf : all triple of functions f =, f 6=, f I defining a P-circuit for f

x1 . . . xi−1xi+1 . . . xn Rf = (f =, f 6=, f I)

points in f|xi=0 \ I {100}
points in f|xi=1 \ I {010}
points in I {− − 1, 11−}
all other points {000}

Theorem
P-circuit minimization for f⇐⇒

minimization of the Boolean relation Rf

P-circuits minimized with Boolean relations are more compact than P-circuits

expressed and minimized as incompletely specified functions

Expressing Flexibility in Logic Synthesis by Boolean Relations 27 / 29

Conclusions

• Boolean relations can be extremely useful for modeling
Boolean hard optimization problems

→ with Boolean relations we can model problems that cannot
be completely described with incompletely specified functions

• Problem: scalability of the approach

– Boolean relation minimization is a very hard problem
– Boolean relation minimizers cannot handle relations with

many outputs

• Boolean relations have been successfully used in logic
synthesis to solve problems that can be cast as the
minimization of relations with a constant number of outputs
(2, 3)

Expressing Flexibility in Logic Synthesis by Boolean Relations 28 / 29

THANK YOU

Expressing Flexibility in Logic Synthesis by Boolean Relations 29 / 29

