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Heterogeneous Architectures Are Emerging Everywhere
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A (Perhaps Easy?) Prediction: 
No Single Architecture Will Emerge as the Sole Winner

• The migration from homogeneous multi-core architectures to 
heterogeneous System-on-Chip architectures will accelerate, 
across almost all computing domains 
– from IoT devices, embedded systems and mobile devices to data 

centers and supercomputers

• A heterogeneous SoC will combine an increasingly diverse set 
of components
– different CPUs, GPUs, hardware accelerators, memory hierarchies, 

I/O peripherals, sensors, reconfigurable engines, analog blocks… 

• The set of heterogeneous SoCs in production in any given 
year will be itself heterogeneous!
– no single SoC architecture will dominate all the markets
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Where the Key Challenges in SoC Design Are…
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• The biggest challenges are (and will increasingly be) found in the 
complexity of system integration
– How to design, program and validate scalable 

systems that combine a very large number of 
heterogeneous components to provide a 
solution that is specialized for a target class 
of applications?

• How to handle this complexity?
– raise the level of abstraction to System-Level Design

– adopt compositional design methods with the Protocol & Shell Paradigm 

– promote Design Reuse



Our Vision:  A System-Level Design Ecosystem

Develop specialized 
components at a    

high level of 
abstraction based on 
unique intellectual 

property knowledge

Select and integrate 
the best set of  IP 

components to design 
and program an SoC

for a target application 
domain

Soft IP Design Spaces

composition

System Design Space

Key 
properties:
modularity,
flexibility,
scalability
reusability

SLD Ecosystem
promotes 
collaboration 
between 
SoC Architects 
and IP Core 
Designers
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Our System-Level Design Approach: Key Ingredients

• Develop Platforms, not just Architectures

– A platform combines an architecture and a companion design methodology

• Raise the level of abstraction

– Move from RTL Design to System-Level Design

– Move from ISA simulators to Virtual Platforms

– Move from Verilog/VHDL to SystemC, also an IEEE standard

– Move from Logic Synthesis to High-Level Synthesis (both commercial and in-house tools), which is the 
key to enabling rich design-space exploration

• Adopt compositional design methods

– Rely on customizable libraries of HW/SW interfaces to simplify the integration of heterogeneous 
components

• Use formal metrics for design reuse

– Synthesize Pareto frontiers of optimal implementations from high-level specs 

• Build real prototypes (both chips and FPGA-based full-system designs)

– Prototypes drive research in systems, architectures, software and CAD tools 
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Embedded Scalable Platforms:   
Architecture + Methodology
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• The flexible architecture 
simplifies the integration of 
heterogeneous components 
by

• balancing regularity and 
specialization

• relying on the Protocol & 
Shell paradigm and 
scalable communication 
infrastructure

Modular
Socket
Interface

[L. P. Carloni, The Case for Embedded Scalable Platforms, DAC 2016 ]

Application
Specification

Application 
Requirements

Profiling & Kernel Identification

Accelerator IP
Encapsulation

Specification
Refinement

HLS & Micro-Architectural Choices

Processor IP 
Instancing

w/ SW Sockets

Accelerator IP Instancing
w/ HW Sockets

Interconnect &
Tile Configuration

w/ ESP Services

Application-Driven System Specification

IP Block Development and Reuse

System Integration

Accelerator IP
Encapsulation

Specification
Refinement

Physical
Constraints

• The system-level design 
methodology promotes 
HW/SW co-design and is 
supported by 

• a mix of commercial and 
in-house CAD tools

• a growing library of 
reusable IP blocks



The ESP Scalable Architecture Template

Template Properties
• Regularity

– tile-based design
– pre-designed on-chip 

infrastructure for communication 
and resource management

• Flexibility
– each ESP design is the result of a 

configurable mix of 
programmable tiles and 
accelerator tiles

• Specialization
– with automatic high-level 

synthesis of accelerators for key 
computational kernels

• Processor Tiles
– each hosting at least one configurable processor 

core capable of running an OS

• Accelerator Tiles
– synthesized from high-level specs

• Other Tiles
– memory interfaces, I/O, etc.

• Network-on-Chip (NoC)
– playing key roles at both design and run time

Possible Instance of an ESP Chip 
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Heterogeneous Applications Bring
Heterogeneous Requirements
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Structure and Behavior of the Debayer Accelerator Data Structures of the PERFECT TAV Benchmarks

• While the Debayer structure and behavior is 
representative of the other benchmarks, the 
specifics of the actual computations, I/O 
patterns, and scratchpad memories vary 
greatly among them 9



Example of ESP Accelerator Design: Debayer - 1
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• The 3 processes execute in pipeline
– on a 2048×2048-pixel image, which is 

stored in DRAM, to produce the 
corresponding debayered version

• The circular buffer allows the reuse 
of local data, thus minimizing the 
data transfers with DRAM

• The ping-pong buffer allows the 
overlapping of computation and 
communication



Example of Design-Space Exploration: 
Accelerator for the SAR Interp-1 Kernel
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Pareto Set Obtained with 
High-Level Synthesis 

(1GHz@1V, CMOS 32nm)
function interp1()

{

for(...)

{

accum = 0;

for(...)

{

accum += sinc(input);

}

store(accum);

}

}

Main loop in Interpolation-1 kernel

• Presence of expensive combinational 
function (sinc() ) in the inner most loop

• Use of “loop knobs” provided by HLS  tools to 
optimize for power and performance

• Derivation of Pareto set highlighting Power-
Performance trade-offs

12



High-Level Synthesis Drives Design-Space Exploration
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• Given a SystemC specification, HLS tools 
provide a rich set of configuration knobs 
to synthesize a variety of RTL 
implementations

– these implementations have different micro-
architectures and provide different cost-
performance trade-offs

• Engineers can focus on revising the high-
level specification

– to expose more parallelism, remove false 
dependencies, increase resource sharing…

– and produce many alternative implementations 
for higher design reusability



Accelerator Design Productivity:
1 Accelerator x Student x Month
• In 3 months 3 students designed 9 TAV 

accelerators by performing these steps
1. Algorithm study and specification in 

synthesizable SystemC

2. Design-space exploration with high-level 
synthesis

3. Integration with LEON-3 processor and 
Linux OS

4. Synthesis of two  implementations
• FPGA 

• 32nm standard cells to  build accelerator tile

5. Testing, validation, and 
performance/power evaluation

Dataflow of WAMI Debayer Kernel
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Optimization of Scratchpad Memory 

within Accelerator Tile for Debayer Kernel
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ESP Design Example: 
An Accelerator for Wide Area Motion Imagery

• The PERFECT WAMI-app is an image processing pipeline in behavioral C code

– From a sequence of frames it extracts masks of “meaningfully” changed pixels

– Complex data-dependency among kernels

– Computational intensive matrix operations

• Global-memory access to compute ratio 45%

• Floating-point operation to compute ratio 15%

• We designed 12 accelerators starting from a C “programmer-view” reference 
implementation

– Methodology to port C into synthesizable SystemC

– Automatic generation of customized RTL memory subsystems for each accelerator

©Luca Carloni – Columbia University

Debayer

Change-Detection

Warp (grayscale) Gradient

Subtract Warp (dx) Warp (dy)

Steep.-Descent

SD-update Hessian

Matrix-Mult

Matrix-Invert

Reshape

Matrix-Add

Warp (iwxp)

fe
ed

b
a

ck

fe
ed

b
a

ck

feedback

Grayscale

Lucas-Kanade

fe
ed

b
a

ck

input output

Lines of Code

Kernels C SystemC RTL

Debayer 195 664 8440

Grayscale 21 368 4079

Warp 88 571 6601

Gradient 65 540 12163

Subtract 36 379 4684

Steep.-Descent 34 410 8744

SD-Update 55 383 7864

Hessian 43 358 7042

Matrix-Invert 166 388 7392

Matrix-Mult 55 307 2708

Reshape 42 269 2160
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[P. Mantovani, G. Di Guglielmo, and L. P. Carloni, High-Level Synthesis 
of Accelerators in Embedded Scalable Platforms, ASPDAC 2016]



From SystemC Specification to Alternative RTL 
Implementations via High-Level Synthesis
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SC_MODULE(mac)

P

rst

clk

in_coeff

in_data

out_data

+×
P

P

P

Pacc = 0;

while(true) {

wait();

out_data = acc +

in_data * n_coeff;

}

SC_CTHREAD(beh)

High-Level Synthesis

Configuration Knobs
(HLS Script)

mpy

a
d
d
e
r

Clk

mpy

a
d
d
e
r

Clk

Virtual (or Logical)
Clock

Real (or Physical)
Clock



From SystemC to RTL via HLS: 
Two Key Questions
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• In which sense each implementation is correct with 
respect to the original specification?

• How to find the best implementation?



From SystemC to RTL via HLS: 
Optimality
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• How to compare 
various synthesized 
implementations? 

– in terms of cost

– in terms of 
performance

• Which 
implementation is 
better?

• This implementation has 
lower latency and lower 
area but also runs at 
lower (physical) clock 
frequency 

• This implementation runs at 
higher  (physical) clock 
frequency and offers higher data 
throughput but costs a bit more 
area
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From SystemC to RTL via HLS: 
Correctness
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• Which notion of 
equivalence to use? 
– between the 

synthesized 
implementation and 
the original 
specification

– among many 
alternative 
implementations?

• How to compare 
the I/O traces of 
the two 
implementations?
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Latency-Insensitive Design and 
the Protocol & Shell Paradigm [Carloni et al. ’99]

Channels (short wires)

Channels (long wires)

Shells (interface logic blocks)

P1

P2

P3

P4

P5

P6

P7

Pearls (synchronous IP cores)
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Correct-by-Construction Design Methodology 
Enables Automatic Wire Pipelining

Shells (interface logic blocks)

Channels (short wires)

Channels (long wires)

P1

P2

P3

P4

P5

P6

P7

Pearls (synchronous IP cores)

RS

RS
RS

RS

RS

RS RS

RS

Relay Stations

Relay Stations are sequential elements initialized with void data items
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Retrospective: Latency-Insensitive Design
[Carloni et al. ’99]
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C1

C2
C3

C4

C5

C6
C7

RS

RS

RS

RS
RS

Latency-Insensitive Design 

• is the foundation for the flexible synthesizable RTL 
representation

• anticipates the separation of computation from 
communication that is proper of TLM with SystemC
– through the introduction of the Protocols & Shell paradigm



Benefits of the 
Protocols & Shells Paradigm
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The Protocol & Shells Paradigm

• preserves modularity of synchronous assumption in 
distributed environment

• guarantees scalability of global property by construction
and through synthesis

• simplifies integrated design & validation by decoupling
communication and computation, thus enabling reusability

• adds design flexibility up to late stages of the design 
process 



Example of ESP Accelerator Design: Debayer - 2
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• The combination of the ESP interface and 
the latency-insensitive protocol enable a 
broad HLS-supported design-space 
exploration

[C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, System-Level Optimization 
of Accelerator Local Memory for Heterogeneous Systems-on-Chip, TCAD ’17]

• For example, for the compute process
– Implementation E is obtained by unrolling 

loop L3 for 2 iterations, which requires 2
concurrent memory-read operations 

– Implementation F is obtained by unrolling L3 
for 4 iterations to maximize performance at 
the cost of more area, but with only 2 
memory-read interfaces; this creates a 
bottleneck because the 4 memory operations 
cannot be all scheduled in the same clock 
cycle. 

– Implementation G, which Pareto-dominates 
implementation F, is obtained by unrolling L3 
for 4 iterations and having 4 memory-read 
interfaces to allow the 4 memory-read 
operations to execute concurrently



ESP Accelerators: Hardware – Software Integration
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• Signal-level interface matches the accelerator interface of 
the general model

• Memory-mapped configuration registers match those 
defined in the accelerator model

• TLM abstractions and HLS allow the accelerator designer 
to be unaware of the particular specification of the SoC 
interconnection

caches

Controller

IRQ

Interconnect Interface and Queues

ESP
Services

Processor IP Socket

I$ D$

CPU IP

ESP modules

OS Drivers

ESP-lib.C-lib

Accelerated app.

ESP Processor Tile 
with Software Socket

ESP Services

DMA Registers ControllerIRQ

Interconnect Interface and Queues

Accelerator IP
Pareto-optimal from HLSPLM

IP Socket Configurable ESP Accelerator Tile 
with Hardware Socket

• ESP Linux modules allow the OS 
to recognize the accelerators in 
the ESP tiles…

• …and simplify the programming 
of the ESP Linux device drivers 
for the accelerators

• the user-provided accelerator-specific 
code is less than 2% for the WAMI-app 
device drivers

[L. P. Carloni, The Case for Embedded Scalable Platforms, DAC 2016 ]



“So, Why Most SoCs are Still Designed Starting from 
Manually-Written RTL Code?”

• Difficult to pinpoint a single cause…
– Natural inertia of applying best practices
– Organization of engineering divisions are based on well-established 

sign-off points of traditional CAD flows
– Limitations of existing SLD tools (for HLS, verification, virtual platforms..)
– Shortage of engineers trained to work at the SLD level of abstraction

28

• Arguably, a chicken-and-egg problem

– the lack of bigger investments in developing SLD methodologies 
and tools is due to a lack of demand from engineers;  conversely, 
the lack of this demand is due to the shortcomings of current SLD 
methodologies and tools

– Academia should take the lead in breaking this vicious cycle
©Luca Carloni – Columbia University



New Course

• CSEE-4868: System-on-Chip Platforms
– Foundation course on the programming, design, and validation of SoCs

with emphasis on high-performance embedded applications

– Offered at Columbia since Spring 2011, part of both the CS and EE 
graduate programs

– Course Goals

• mastering the HW and SW aspects of integrating heterogeneous components 
into a complete system

• designing new components that are reusable across different systems, product 
generations, and implementation platforms

• evaluating designs in a multi-objective optimization space

– Has moved to the upper-level curriculum in Fall 2016

29©Luca Carloni – Columbia University
[L. P. Carloni, The Case for Embedded Scalable Platforms, DAC 2016 ]



Teaching System-on-Chip Platforms at Columbia:
The Fall-2015 Course Project in Numbers
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• At Columbia we developed the course 
‘CSEE-6868 System-on-Chip Platforms’ 
based on the ESP Design Methodology

• The Fall-2015 Project by Numbers
– 21 student teams competed in designing a hardware 

accelerator for the WAMI Gradient kernel during a 
1-month period

– 661: Number of improved designs across all teams
– 31.5: Average number of improved designs per team
– 1.5: Average number of improved designs committed 

each day per team
– 99: Total number of  changes of the Pareto curve 

over the project period
– 11: Final number of Pareto-optimal designs
– 26X: Performance range of final Pareto curve
– 10X: Area range of final Pareto curve



Scaling Up the Design Complexity:
The Fall-2016 Course Project 
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• Fall-2016 New Features
– Cloud-based project environment
– Introduction of IP reuse and 

compositional system-level design

• The Fall-2016 Project by Numbers
– 15 student teams competed 

in designing a system 
combining DCT and IDCT 
accelerators

– 302: Number of improved 
module designs across 
all teams

– 20.5: Average number of 
improved module designs 
per team

– 12.1: Average number of 
improved module designs 
per day 

– 20: Total number of days 
when the Pareto curve of 
the system changed

– 20:  Final number of 
Pareto-optimal designs

– 24X: System performance range
– 4X: System area range

Zoom Zoom Zoom

DCT

IDCT
System



Keep Scaling Up the Design Complexity:
The Fall-2017 Course Project 
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• Competitive and 
collaborative system-
level design-space 
exploration of a CNN 
accelerator

– partitions of the set of 
student teams 
compete on the 
reusable design of an 
given CNN stage 

– all teams combine 
their stage design with 
the designs they 
“license” for the other 
stage to compete for 
the design of the 
overall CNN



Recent Industrial Advances:  NVIDIA MatchLib
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In Summary

• Computer architectures are increasingly heterogeneous

• Heterogeneity raises design complexity

• Coping with complexity requires 

1. raising the level of abstraction in hardware design and 

2. embracing design for reusability 

• High-level synthesis is a key technology to meet both requirements

• Flexible interfaces based on LID Protocols & Shells Paradigm are 
critical for composing circuits synthesized with HLS
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