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Heterogeneous Architectures Are Emerging Everywhere
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A (Perhaps Easy?) Prediction:
No Single Architecture Will Emerge as the Sole Winner

 The migration from homogeneous multi-core architectures t0 s
heterogeneous System-on-Chip architectures will accelerate, =
across almost all computing domains

— from loT devices, embedded systems and mobile devices to data
centers and supercomputers

* A heterogeneous SoC will combine an increasingly diverse set -
of components

— different CPUs, GPUs, hardware accelerators, memory hierarchies,
/O peripherals, sensors, reconfigurable engines, analog blocks...

e The set of heterogeneous SoCs in production in any given
year will be itself heterogeneous!

— no single SoC architecture will dominate all the markets

5 //.‘.. e uvrfn e A {lﬁf’s“&'\X\
Lo -/ ’F } Ly “

T ,'&,3_, ,,f‘)n- \\
o o, 1Y a‘g

(7 S '/
§ATe). R
I o A A "“TNQ \
/ ey /I: \M):s 'gﬂ o % "1

©Luca Carloni — Columbia University Page 3



Where the Key Challenges in SoC Design Are...

 The biggest challenges are (and wiill mcreasmgly be) foundlln thel_

complexity of system integration

— How to design, program and validate scalable
systems that combine a very large number of
heterogeneous components to provide a
solution that is specialized for a target class
of applications?

e How to handle this complexity? |

— raise the level of abstraction to System-Level Design
— adopt compositional design methods with the Protocol & Shell Paradigm

— promote Design Reuse

©Luca Carloni — Columbia University Page 4



Our Vision: A System-Level Desigh Ecosystem

SLD Ecosystem Key
promotes properties:
collaboration modularity,
between flexibility,
SoC Architects scalability
and IP Core reusability
Designers

>
Soft IP Design Spaces
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Our System-Level Desigh Approach: Key Ingredients

e Develop Platforms, not just Architectures

— A platform combines an architecture and a companion design methodology
e Raise the level of abstraction

— Move from RTL Design to System-Level Design

— Move from ISA simulators to Virtual Platforms

— Move from Verilog/VHDL to SystemC, also an IEEE standard

— Move from Logic Synthesis to High-Level Synthesis (both commercial and in-house tools), which is the
key to enabling rich design-space exploration

e Adopt compositional design methods

— Rely on customizable libraries of HW/SW interfaces to simplify the integration of heterogeneous
components

e Use formal metrics for design reuse
— Synthesize Pareto frontiers of optimal implementations from high-level specs
e Build real prototypes (both chips and FPGA-based full-system designs)

— Prototypes drive research in systems, architectures, software and CAD tools
©Luca Carloni — Columbia University 6



Embedded Scalable Platforms:
Architecture + Methodology

e The flexible architecture Application Application
simplifies the integration of Specification Requirements

heterogeneous components

IP Block Development and Reuse
System Integration

by Profiling & Kernel Identification

e balancing regularity and
specialization

Specification Accelerator IP
. Refinement Encapsulation
e relying on the Protocol & P

Shell paradigm and v'v .v

scalable communication HLS & Micro-Architectural Choices

infrastructure

Modular
| Socket

e The system-level design

Interconnect & Processor IP 7 erface
methodology promotes Tile Configuration Instancing ’
HW/SW co-design and is w/ ESP Services w/ SW Sockets

supported by Physical Accelerator IP Instancing
e a mix of commercial and Constraints W/ HW Sockets

in-house CAD tools

e agrowing library of
reusable IP blocks [L. P. Carloni, The Case for Embedded Scalable Platforms, DAC 2016 ]
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The ESP Scalable Architecture Template

Template Properties
e Regularity
— tile-based design

— pre-designed on-chip
infrastructure for communication
and resource management

e Flexibility

Possible Instance of an ESP Chip — each ESP design is the result of a
configurable mix of
— each hosting at least one configurable processor programma ble tiles and
core capable of running an OS accelerator tiles
— synthesized from high-level specs ® SpECiaIizatiOr\
* OtherTiles — with automatic high-level
— memory interfaces, 1/0, etc. h . f | f k
e Network-on-Chip (NoC) synthesis of acce erators 1or key
— playing key roles at both design and run time computatlonal kernels
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Heterogeneous Applications Bring

Heterogeneous Requirements

Data Structures of the PERFECT TAV Benchmarks

O minimum addressable element
O input data (in-place output data)
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Structure and Behavior of the Debayer Accelerator

Accelerator Tile

Private Local Memory
s read
Pw_m
‘E" C_-:n 1
DMAC| | = § .
1] " wWirte
= c_:ir-_“ circular buffer
|l:l|:|
Output L out
ping-pong buffer
(a)

e EHEENDB— 20— 5
out]1] = cart]2] = out]1] =

Computation dehayer debayer debmyer —
fin[1,5]) [in[2 5]} [in]=2,7]]

Qutput o 2 )

(b}
While the Debayer structure and behavior is
representative of the other benchmarks, the
specifics of the actual computations, 1/0
patterns, and scratchpad memories vary
greatly among them



Example of ESP Accelerator Design: Debayer - 1

i #ineclude <systemc.h>

@ SC_MODULE (Debayer) |

] s in<bool> clk, rst;

4 private:

5 £ lgnal<beel> i wvalicd, i ready, o walid, o ready;
i IEEE H% E"Eié;': Sl circular 'u“E:j
% int B1[Z2048];

) public:

i L

1l ZC_CTOR (debayer)

12 SC_CTHREAD (input, clk.posi));

13 reset sirst, false);

14 SC CTE 1 ipute, Slk.pasi)h;

15 reget_signal dsirat, falsa);

1t CT Al clk.pos{)};

" reset_signal_is(rst, false);

& S

1 ]

20 I voald input (veld) | I

1 J4 raset

- unsigned circ = 0; S/ circwiar buffer write pointer
2 walt (),

4 while (true)

25 LO: fer (imk r-0; r<2048; réi)

2 J4 DMA reguest

k) A4 read input

% Ll: Ffer {(int <=0; c<204E; c++)

L] { Bleice]l[e] = £4..L); v Alwelte Lo AQ
3 S8 oputput L.

3l if {r »=8)¢

iz S5 wait for ready from compute then notify as
13 §

4 CLECH+4;

35 if (cire Bl

30 circ 0;

37 ]

% b

39 ]
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valid

&

I?nid compute (weld) EI
int PAD 27 bonl tlag true;
int r r = 0; // central row of the mask
A resat L.,
walt(};
while (true| |
L2: for [(int r=0; r<204&8-PRD; T++)
A iwait for valid from input then notify as ready)
E_r = clre_ bulffer rowi{r + £);
L3: fer (int j=PAD; J<204E-PRD; J++)
if {(flag) BO[]] g{alb[r_r] [j-2], a0[r_rl(3i-11.
AO[r_rl[3], AO[r_r]l[j+1l], AO[r_r]l3+2], ...]
else Bl[9] = g{AD[c_r][j-2], AD[r_rc]l[9-11.
BO[r_re]l1)s AD[r_ ] [341l], AD(r_rc] [a+2]s «::);
}
A fwalid to output, ready to compute)
flag = [flaw;
1
]
I?nid sutput (weid) | I
int FAD = Z; boel flag = true;
A4 oroeset L.,
waibt(};
while (true] |
Ld: fer (int r=PaD; r<2048-PAD; r++} |
£ fwait for wvalid from compute then notify as ready)

A4 prepare DMA request
A4 mend
L5: fer (ilnt c=-PAD; c<2048-PRD;
if (flag) hi(BC[c]l, ...); JSfread from array BO
aelse h(Bl[z]., Firead from array Bl

data
o)

k
A4 fready te compule)
flag - !flag;

I

sccelerator Tile

Private Local Memory

Jsread

w@

cincular buffer

EII:I

l:ll..lt
ping-pong buffer
[a)
Ealpip Ny iphylyiply B
- CHENONDE ===
out[1]= part[2] = out]1]=
Computation debager debayer debeyer —
in fin[2 £]) [in2.7])
output 8 &8
{b)
e The 3 processes execute in pipeline
— ona 2048x2048-pixel image, which is
stored in DRAM, to produce the
corresponding debayered version
e The circular buffer allows the reuse
of local data, thus minimizing the
data transfers with DRAM
e The ping-pong buffer allows the

overlapping of computation and
communication
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Example of Design-Space Exploration:

Accelerator for the SAR Interp-1 Kernel

Main loop in Interpolation-l kernel Pareto Set Obtained with
Ffunction interpl ( High-Level Synthesis
L (1GHz@1V, CMOS 32nm)

{ accum = O ,/\ /\]
for (. 100 e
{
accum += sinc (input); ® Break
}
store (accum) ; 80 @ Unroll
}
} = @ Pipeline
2
£ 60 g
e Presence of expensive combinational g o
o]
function (sinc() ) in the inner most loop * 015 e
e Use of “loop knobs” provided by HLS tools to y é %Oo o o
optimize for power and performance
e Derivation of Pareto set highlighting Power- 0
0 2 4 6

Performance trade-offs

Execution Time (million-clock-cycles)

©Luca Carloni — Columbia University 12



High-Level Synthesis Drives Design-Space Exploration

e Given a SystemC specification, HLS tools

A
: 3 L provide a rich set of configuration knobs
g 2, to synthesize a variety of RTL
implementations

— these implementations have different micro-
architectures and provide different cost-

performance trade-offs
e Engineers can focus on revising the high-

level specification
— to expose more parallelism, remove false
dependencies, increase resource sharing...

Code Transformation )
— and produce many alternative implementations
for higher design reusability
13

SystemC
Design Space
High-Level Synthesis -

©Luca Carloni — Columbia University



Accelerator Design Productivity:
1 Accelerator x Student x Month

e In 3 months 3 students desighed 9 TAV

accelerators by performing these steps

1.

Algorithm study and specification in
synthesizable SystemC

Design-space exploration with high-level
synthesis

Integration with LEON-3 processor and
Linux OS

Synthesis of two implementations
FPGA
32nm standard cells to build accelerator tile

5. Testing, validation, and

performance/power evaluation

©Luca Carloni — Columbia University

Dataflow of WAMI Debayer Kernel

valid valid
D1 = © D2 & " D3
ready ready
ul6 a[12288] j Lb ulé b[3][12264]

4

Optimization of Scratchpad Memory

within Accelerator Tile for Debayer Kernel

valid valid
D1, —— D2, —— D3,
ready ready
merge Add read ports hd
w7 | | YY¥
| memory controller |
QT S O I
% BU EBJU H BHD! B1 Bz—‘ BS—‘ BA BS |785
{ AN

A32b—~32b— ~32b— .~16b——16b—.~16b—s—16h—~16b—~16b—
Data distribution

Data duplication



ESP Design Example:

An Accelerator for Wide Area Motion Imagery

e The PERFECT WAMI-app is an image processing pipeline in behavioral C code data-dependency diagram
— From a sequence of frames it extracts masks of “meaningfully” changed pixels T
e 3 Warp (grayscale) m

Subtract

Steep.-Descent

feedback

SD-update Hessian

Matrix-Invert

feedback

Matrix-Mult

— Complex data-dependency among kernels

feedback

Reshape

— Computational intensive matrix operations e
. Warp (iwxp) Lucas-Kanade
e Global-memory access to compute ratio 45%
ange-Detection
feedbacl

e Floating-point operation to compute ratio 15% 'Lines of Code

. . « . ” Kernels C SystemC RTL
e We designed 12 accelerators starting from a C “programmer-view” reference pevayer 195 664 8440
. I . Grayscale 21 368 4079
Implementation Warp 88 571 6601 T
: : Gradient 65 540 12163
— Methodology to port C into synthesizable SystemC Subtract 36 379 aess |
_ : : : Steep.-Descent 34 410 8744 9
Automatic generation of customized RTL memory subsystems for each accelerator ;"\ i w3 7364 | 4
Hessian 43 358 7042 2
Matrix-Invert 166 388 7392 2
Matrix-Mult 55 307 2708 |
Reshape 42 269 2160
[P. Mantovani, G. Di Guglielmo, and L. P. Carloni, High-Level Synthesis Matrix-Add 36 287 2310
of Accelerators in Embedded Scalable Platforms, ASPDAC 2016] Change-Detect. 128 939 18416

©Luca Carloni — Columbia University Total 964 5863 92603



From SystemC Specification to Alternative RTL

Implementations via High-Level Synthesis

© coeff;

SC_CTHREAD(beh) )

SC_MODULE(mac)

Virtual (or Logical)
Clock

-

&

/

n-C

©Luca Carloni — Columbia University

Q )

Configuration Knobs
(HLS Script)

Real (or Physical)
Clock

Page 18



From SystemC to RTL via HLS:

Two Key Questions

SC_MODULE(mac)

Virtual (or Logical)
Clock

e |In which sense each implementation is correct with

DI a
out_data
D acc = 0;
while (true) {
a

= acc +
5 in data * nicoeff;

SC_CTHREAD(beh) %

) )
Configuration Knobs
(HLS Script)

4

Real (or Physical)
Clock

- \

N n

a

4

respect to the original specification?

e How to find the best implementation?

©Luca Carloni — Columbia University
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From SystemC to RTL via HLS:

O timalit

QQA =

data
out_da
)
SC_CTHREAD(beh)
SC_MODULE(mac)

mpy

ngh-LeveI Synthesis

4
”nN-

adder

_ N

e This implementation has
lower latency and lower
area but also runs at
lower (physical) clock
frequency

©Luca Carloni — Columbia University

)
Configuration Knobs
(HLS Script)

74

N

f ~
g ol

This implementation runs at
higher (physical) clock
frequency and offers higher data

throughput but costs a bit more
area

e How to compare
various synthesized
implementations?

— in terms of cost

— in terms of
performance

e Which
implementation is
better?

Page 20



From SystemC to RTL via HLS:
Correctness

data
Configuration Knobs
i (HLS Script)
SC_CTHREAD(beh)
SC_MODULE(mac)

ngh-LeveI Synthesis

N

-
N

<
<

o - 2
m- m--
3 3
> 1 6 6 5 1 6 0 0
7 2 11 11 ; 5 = . .
? ! 25 25 9 1 14 11 11
34 34
9 25 25
34 34

©Luca Carloni — Columbia University

34

e Which notion of
equivalence to use?

— between the
synthesized
implementation and
the original
specification

— among many
alternative
implementations?

e How to compare
the 1/0 traces of
the two
implementations?

Page 21



Latency-Insensitive Design and
the Protocol & Shell Paradigm [Carloni et al. ’99]

©Luca Carloni — Columbia University



Correct-by-Construction Desigh Methodology

Enables Automatic Wire Pipelining

Relay Stations

Relay Stations are sequential elements initialized with void data items

©Luca Carloni — Columbia University Page 23



C1
C
C
Shell Relay Relay Shell
Station Station
L core WS) (E}T | L Gors
Con.e m Core EF L
=
dataln N

©Luca Carloni — Columbia University

Retrospective: Latency-Insensitive Design
[Carloni et al. ’99]

b\passabée gueue
dataln, 1 — dataOut,
voidIn, i L — voidOut,
R | ~— stopln,
Stepost i stallable core module
— dataOut,
— voidOut,
dasate, AN ~— stopln,
voidln, — ,
stopQut.——
fire el .
! l |:1 ) :'llJ.Ll 1 mpty V'Didlnn 2y AV, \’Oldout” 1
bypass: control
-
stopOut,, .| stopln,,»,
S U F’BQ--—n bypass,.
fulluzy empcya s

Latency-Insensitive Design

e js the foundation for the flexible synthesizable RTL
representation

e anticipates the separation of computation from
communication that is proper of TLM with SystemC
— through the introduction of the Protocols & Shell paradigm

Page 24



Benefits of the
Protocols & Shells Paradigm

b\passable gueue
i a
C1 dataln, 1 —dataOut,
. voidln, — i L muxé—- — voidOut,
o ] ~—stopln,
C ; stopOut; 5 stallable core module
c2py = N /S T ) R | Py SR
@) = D7 D | qaraoont,
E — voidOut,
C dataln, ' AN ~— stopln,
voidln, — ~ \ I,
stopOut,~— FID e J
s fire clk
voidIn,, . K voidOut,, .,

JENG | PR P v
C bypass; control
PR
stopOut,, stoplny,
eNgg | (el y bypasss,
fully sy Py

The Protocol & Shells Paradigm
Shell Relay Relay Shell

- e preserves modularity of synchronous assumption in

@ Core @ LJ:{ p—» Core . . o
oI ] @ o distributed environment

Logic

e guarantees scalability of global property by construction

e — \x e | aamou and through synthesis

_ F:mhn /iﬁ e o simplifies integrated design & validation by decoupling
= communication and computation, thus enabling reusability
o D S e adds design flexibility up to late stages of the design

rocess
©Luca Carloni — Columbia University P Page 25



Example of ESP Accelerator Design: Debayer - 2

input

output

R

[C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, System-Level Optimization
of Accelerator Local Memory for Heterogeneous Systems-on-Chip, TCAD ’17]

_..." compute _p..'
' Bl1[2048]

©Luca Carloni — Columbia University

="

The combination of the ESP interface and
the latency-insensitive protocol enable a
broad HLS-supported design-space
exploration

For example, for the compute process
— Implementation E is obtained by unrolling

loop L3 for 2 iterations, which requires 2
concurrent memory-read operations

Implementation F is obtained by unrolling L3
for 4 iterations to maximize performance at
the cost of more area, but with only 2
memory-read interfaces; this creates a
bottleneck because the 4 memory operations
cannot be all scheduled in the same clock
cycle.

Implementation G, which Pareto-dominates
implementation F, is obtained by unrolling L3
for 4 iterations and having 4 memory-read
interfaces to allow the 4 memory-read
operations to execute concurrently

26



ESP Accelerators: Hardware — Software Integration

ESP Processor Tile
with Software Socket

Gl Esp-iib.
- Drivers

ESP modules

Controller

Interconnect Interface and Queues

- ESP Linux modules allow the OS

to recognize the accelerators in
the ESP tiles...

...and simplify the programming
of the ESP Linux device drivers
for the accelerators

- the user-provided accelerator-specific
code is less than 2% for the WAMI-app
device drivers

©Luca Carloni — Columbia University [L. P. Carloni, The Case for Embedded Scalable Platforms, DAC 2016 ]

m Registers Controller

Interconnect Interface and Queues

- Signal-level interface matches the accelerator interface of
the general model

- Memory-mapped configuration registers match those
defined in the accelerator model

- TLM abstractions and HLS allow the accelerator designer

to be unaware of the particular specification of the SoC
interconnection

Page 27



“So, Why Most SoCs are Still Designed Starting from
Manually-Written RTL Code?”

e Difficult to pinpoint a single cause...
— Natural inertia of applying best practices

— Organization of engineering divisions are based on well-established
sign-off points of traditional CAD flows

— Limitations of existing SLD tools (for HLS, verification, virtual platforms..)
— Shortage of engineers trained to work at the SLD level of abstraction

e Arguably, a chicken-and-egg problem

— the lack of bigger investments in developing SLD methodologies
and tools is due to a lack of demand from engineers; conversely,
the lack of this demand is due to the shortcomings of current SLD
methodologies and tools

— Academia should take the lead in breaking this vicious cycle

©Luca Carloni — Columbia University 28



New Course &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

e CSEE-4868: System-on-Chip Platforms

— Foundation course on the programming, design, and validation of SoCs
with emphasis on high-performance embedded applications

— Offered at Columbia since Spring 2011, part of both the CS and EE
graduate programs

— Course Goals

e mastering the HW and SW aspects of integrating heterogeneous components
into a complete system

e designing new components that are reusable across different systems, product
generations, and implementation platforms

e evaluating designs in a multi-objective optimization space

— Has moved to the upper-level curriculum in Fall 2016
[L. P. Carloni, The Case for Embedded Scalable Platforms, DAC 2016 ]
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Teaching System-on-Chip Platforms at Columbia:
The Fall-2015 Course Project in Numbers

e At Columbia we developed the course CSER Fo868 - Gradient - Pareto C““"f
‘CSEE-6868 System-on-Chip Platforms’ _
based on the ESP Design Methodology

e The Fall-2015 Project by Numbers

— 21 student teams competed in designing a hardware Lo -
accelerator for the WAMI Gradient kernel during a -
1-month period

— 661: Number of improved designs across all teams
— 31.5: Average number of improved designs per team

— 1.5: Average number of improved designs committed
each day per team

— 99: Total number of changes of the Pareto curve 00 -
over the project period '

— 11: Final number of Pareto-optimal designs
— 26X: Performance range of final Pareto curve
— 10X: Area range of final Pareto curve

Effective Latency (ms)

] 2000 4000 G000 8000 10000

. . . . Area (equivalent LUTs)
©Luca Carloni — Columbia University Page 31



Scaling Up the Design Complexity:
The Fall-2016 Course Project

°® Fa I I_ZO 16 New Featu res CSEE-4868 Fall 2016 - DCT Pareto Curve CSEE-4868 Fall 2016 - IDCT Pareto Curve
. . e ‘ ‘ No‘v 26, 201% e I ‘ ‘ I Nov .26‘ 201%

— Cloud-based project environment T4 P %

— Introduction of IP reuse and 3
compositional system-level design | o

%‘ B80000.00 — %‘ B
e The Fall-2016 Project by Numbers |
E I

— 15 student teams competed
in des'ig_ning a system o4 r—
combining DCT and IDCT 80000000 o bocooco ~ U0
accelerators

. _ ' ‘ | + Jooooo.00 - 00.00 =y | \ \ | :

— 302: Number Of Improved 700000.00 [+ 100000 ?DOO‘:rOEH(Um;;JOCOO 400000 500000 20000 30000 4CUL\:re=(iU:;3) 60000 70000 80000
module designs across s - 70000000 - =1
all teams

_ = 600000.00 — - _

— 20.5: Average number of g w0000 - . | B 2
improved module designs |3 § 0000000 - o
per team g s . g 400000.00 — - g

— 12.1: Average number of = | w000 - | £
improved module designs . sone0ece - -
per day 200000.00 - - 20000000 — *

— 20: Total number of days

100000.00 — - 100000.00 — -
when the Pareto curve of
the system changed - ‘ ‘ . ‘ . - ‘ ‘ ‘ . .
. (o] 2e+06 4e +06 6e+06 Be+06 le+07 o] 2e+06 4e+06 6e+06 8e+06 le+07
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Keep Scaling Up the Design Complexity:
The Fall-2017 Course Project
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Recent Industrial Advances: NVIDIA MatchlLib

O Why GitHub? Enterprise Explore Marketplace Pricing Sign in ‘ Sign up I Connections Guide
Latency Insensitive Channel Library
NVlabs / matchlib ©Watch | 14 destar 4 Y¥Fork 0
MATCHLIB, NVIDIA
<> Code Issues 0 Pull requests 0 Projects 0 Insights

MatchLib communications methodology is based on high-level synthesis (HLS) on the latency-insensitive design (LID) paradigm.
Systems are fully designed in synthesizable SystemC and C++, and components are connected through synthesizable SystemC
latency-insensitive (LI) channels, The approach is based on alibrary and AP of |atency-insensitive channels called Connections, which

MatchlLib is the subject of this guide.
1 INTRODUCTION

MatchLib’s Connections is a library and APT of latency-insensitive channels. It was presented for the first time at

MatchlLib is a SystemC/C++ libi f ly-used hard functi d ts that by thesized b t . - . P .
atchlib is a SystemC/C++ library of commonly-used hardware functions and components that can be synthesized by mos DAC 2018 as part of a new modular digital VLSI methodology [Khailany et al. 2018]. To know the motivation behind

commercially-available HLS tools into RTL. i R
Connections refer to section 2.3 of [Khailany et al. 2018].

Doxygen-generated documentation can be found here. Additional documentation on the Connections latency-insensitive All components of this library are HLS-able and they are designed to be synthesized with Mentor Catapult. Table 1
channel implementation can be found in the Connections Guide. shows an overview of the most relevant components and API in Connections.
Getting Sta rted Table 1. API of Connections reflecting unified terminals (ports) and types of channels
Port Functions
. In<T> Pop(), PopNB()
Tool versions
Out<T> Push(), PushNB()
MatchLib is regressed against the following tool/dependency verions: InBuffered<T> PopQ. PopNBO, Empty(). Peck(
OutBuffered<T> Push(), PushNB(), Full()
¢« gec -493
e systemc -2.3.1
1550 Channel Description
¢ boost - 1.55.
eos Combinational < T> Combinationally connects ports
¢ doxygen - 1.8.11 - X N
. M : M . B s<T> Enables DEQ wh 4
ey INVITED: A Modular Digital VLSI Flow for High-Productivity s L"“M“LNEV“;“:”L‘[”“
! Pipeline<T ‘nables E when ful
¢ catapult -10.3 SOC Des]gn Buffer<T> FIFO channel
e ves -2017.03-SP2-11 OutNetwork<T>, InNetwork<T>  Network channels: packetizer and de-packetizer
. verdi -2017.12-SP2-2 Brucek Khailany', Evgeni Krimer?, Rangharajan Venkatesan', Jason Clemons', Joel S. Emer',

Matthew Fojtik'{', Alicia Klinefelter!, Michael Pellauer!, Nathaniel Pinckney'i, Yakun Sophia Shaof,

Shreesha Srinath*, Christopher Torng #, Sam (Likun) Xi*, Yanging Zhang', Brian Zimmer" 2 PORTS

f s . o . PN . A module’s latency-insensitive (LI) interface is composed of ports, with which it connects to other modules through
NVIDIA, *Cornell University, Harvard University, Massachusetts Institute of TEChnOIOgy channels. The port is the element through which a module enforces the LI protocol. The communication invariant
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In Summary

e Computer architectures are increasingly heterogeneous
e Heterogeneity raises design complexity
e Coping with complexity requires
1. raising the level of abstraction in hardware design and
2. embracing design for reusability
e High-level synthesis is a key technology to meet both requirements

e Flexible interfaces based on LID Protocols & Shells Paradigm are
critical for composing circuits synthesized with HLS
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