
How High-Level Synthesis Enables
Design for Reusability of Hardware Accelerators

Luca Carloni
Department of Computer Science

Columbia University in the City of New York

“Quo Vadis Logic Synthesis?”, a Workshop at DATE’19 · Florence, Italy · March 29, 2019

Heterogeneous Architectures Are Emerging Everywhere

©Luca Carloni – Columbia University 2

[Source:
https://cloudplatform.googleblog.com/]

[Source: www.microsoft.com/]

[Source: https://aws.amazon.com/ec2/instance-types/f1/]

[Source: www.mobileye.com/]

[Source: “Xeon+FPGA Tutorial @ ISCA’16”] [Source: www.xilinx.com/]

[Source: https://blogs.nvidia.com/]

A (Perhaps Easy?) Prediction:
No Single Architecture Will Emerge as the Sole Winner

• The migration from homogeneous multi-core architectures to
heterogeneous System-on-Chip architectures will accelerate,
across almost all computing domains
– from IoT devices, embedded systems and mobile devices to data

centers and supercomputers

• A heterogeneous SoC will combine an increasingly diverse set
of components
– different CPUs, GPUs, hardware accelerators, memory hierarchies,

I/O peripherals, sensors, reconfigurable engines, analog blocks…

• The set of heterogeneous SoCs in production in any given
year will be itself heterogeneous!
– no single SoC architecture will dominate all the markets

Page 3©Luca Carloni – Columbia University

Where the Key Challenges in SoC Design Are…

Page 4©Luca Carloni – Columbia University

• The biggest challenges are (and will increasingly be) found in the
complexity of system integration
– How to design, program and validate scalable

systems that combine a very large number of
heterogeneous components to provide a
solution that is specialized for a target class
of applications?

• How to handle this complexity?
– raise the level of abstraction to System-Level Design

– adopt compositional design methods with the Protocol & Shell Paradigm

– promote Design Reuse

Our Vision: A System-Level Design Ecosystem

Develop specialized
components at a

high level of
abstraction based on
unique intellectual

property knowledge

Select and integrate
the best set of IP

components to design
and program an SoC

for a target application
domain

Soft IP Design Spaces

composition

System Design Space

Key
properties:
modularity,
flexibility,
scalability
reusability

SLD Ecosystem
promotes
collaboration
between
SoC Architects
and IP Core
Designers

5©Luca Carloni – Columbia University

Our System-Level Design Approach: Key Ingredients

• Develop Platforms, not just Architectures

– A platform combines an architecture and a companion design methodology

• Raise the level of abstraction

– Move from RTL Design to System-Level Design

– Move from ISA simulators to Virtual Platforms

– Move from Verilog/VHDL to SystemC, also an IEEE standard

– Move from Logic Synthesis to High-Level Synthesis (both commercial and in-house tools), which is the
key to enabling rich design-space exploration

• Adopt compositional design methods

– Rely on customizable libraries of HW/SW interfaces to simplify the integration of heterogeneous
components

• Use formal metrics for design reuse

– Synthesize Pareto frontiers of optimal implementations from high-level specs

• Build real prototypes (both chips and FPGA-based full-system designs)

– Prototypes drive research in systems, architectures, software and CAD tools
6©Luca Carloni – Columbia University

Embedded Scalable Platforms:
Architecture + Methodology

Page 7©Luca Carloni – Columbia University

• The flexible architecture
simplifies the integration of
heterogeneous components
by

• balancing regularity and
specialization

• relying on the Protocol &
Shell paradigm and
scalable communication
infrastructure

Modular
Socket
Interface

[L. P. Carloni, The Case for Embedded Scalable Platforms, DAC 2016]

Application
Specification

Application
Requirements

Profiling & Kernel Identification

Accelerator IP
Encapsulation

Specification
Refinement

HLS & Micro-Architectural Choices

Processor IP
Instancing

w/ SW Sockets

Accelerator IP Instancing
w/ HW Sockets

Interconnect &
Tile Configuration

w/ ESP Services

Application-Driven System Specification

IP Block Development and Reuse

System Integration

Accelerator IP
Encapsulation

Specification
Refinement

Physical
Constraints

• The system-level design
methodology promotes
HW/SW co-design and is
supported by

• a mix of commercial and
in-house CAD tools

• a growing library of
reusable IP blocks

The ESP Scalable Architecture Template

Template Properties
• Regularity

– tile-based design
– pre-designed on-chip

infrastructure for communication
and resource management

• Flexibility
– each ESP design is the result of a

configurable mix of
programmable tiles and
accelerator tiles

• Specialization
– with automatic high-level

synthesis of accelerators for key
computational kernels

• Processor Tiles
– each hosting at least one configurable processor

core capable of running an OS

• Accelerator Tiles
– synthesized from high-level specs

• Other Tiles
– memory interfaces, I/O, etc.

• Network-on-Chip (NoC)
– playing key roles at both design and run time

Possible Instance of an ESP Chip

8©Luca Carloni – Columbia University

Heterogeneous Applications Bring
Heterogeneous Requirements

©Luca Carloni – Columbia University

Structure and Behavior of the Debayer Accelerator Data Structures of the PERFECT TAV Benchmarks

• While the Debayer structure and behavior is
representative of the other benchmarks, the
specifics of the actual computations, I/O
patterns, and scratchpad memories vary
greatly among them 9

Example of ESP Accelerator Design: Debayer - 1

11©Luca Carloni – Columbia University

• The 3 processes execute in pipeline
– on a 2048×2048-pixel image, which is

stored in DRAM, to produce the
corresponding debayered version

• The circular buffer allows the reuse
of local data, thus minimizing the
data transfers with DRAM

• The ping-pong buffer allows the
overlapping of computation and
communication

Example of Design-Space Exploration:
Accelerator for the SAR Interp-1 Kernel

©Luca Carloni – Columbia University

Pareto Set Obtained with
High-Level Synthesis

(1GHz@1V, CMOS 32nm)
function interp1()

{

for(...)

{

accum = 0;

for(...)

{

accum += sinc(input);

}

store(accum);

}

}

Main loop in Interpolation-1 kernel

• Presence of expensive combinational
function (sinc()) in the inner most loop

• Use of “loop knobs” provided by HLS tools to
optimize for power and performance

• Derivation of Pareto set highlighting Power-
Performance trade-offs

12

High-Level Synthesis Drives Design-Space Exploration

13©Luca Carloni – Columbia University

• Given a SystemC specification, HLS tools
provide a rich set of configuration knobs
to synthesize a variety of RTL
implementations

– these implementations have different micro-
architectures and provide different cost-
performance trade-offs

• Engineers can focus on revising the high-
level specification

– to expose more parallelism, remove false
dependencies, increase resource sharing…

– and produce many alternative implementations
for higher design reusability

Accelerator Design Productivity:
1 Accelerator x Student x Month
• In 3 months 3 students designed 9 TAV

accelerators by performing these steps
1. Algorithm study and specification in

synthesizable SystemC

2. Design-space exploration with high-level
synthesis

3. Integration with LEON-3 processor and
Linux OS

4. Synthesis of two implementations
• FPGA

• 32nm standard cells to build accelerator tile

5. Testing, validation, and
performance/power evaluation

Dataflow of WAMI Debayer Kernel

©Luca Carloni – Columbia University

Optimization of Scratchpad Memory

within Accelerator Tile for Debayer Kernel

14

ESP Design Example:
An Accelerator for Wide Area Motion Imagery

• The PERFECT WAMI-app is an image processing pipeline in behavioral C code

– From a sequence of frames it extracts masks of “meaningfully” changed pixels

– Complex data-dependency among kernels

– Computational intensive matrix operations

• Global-memory access to compute ratio 45%

• Floating-point operation to compute ratio 15%

• We designed 12 accelerators starting from a C “programmer-view” reference
implementation

– Methodology to port C into synthesizable SystemC

– Automatic generation of customized RTL memory subsystems for each accelerator

©Luca Carloni – Columbia University

Debayer

Change-Detection

Warp (grayscale) Gradient

Subtract Warp (dx) Warp (dy)

Steep.-Descent

SD-update Hessian

Matrix-Mult

Matrix-Invert

Reshape

Matrix-Add

Warp (iwxp)

fe
ed

b
a

ck

fe
ed

b
a

ck

feedback

Grayscale

Lucas-Kanade

fe
ed

b
a

ck

input output

Lines of Code

Kernels C SystemC RTL

Debayer 195 664 8440

Grayscale 21 368 4079

Warp 88 571 6601

Gradient 65 540 12163

Subtract 36 379 4684

Steep.-Descent 34 410 8744

SD-Update 55 383 7864

Hessian 43 358 7042

Matrix-Invert 166 388 7392

Matrix-Mult 55 307 2708

Reshape 42 269 2160

Matrix-Add 36 287 2310

Change-Detect. 128 939 18416

Total 964 5863 92603

data-dependency diagram

L
u
c
a

s
-K

a
n
a

d
e

[P. Mantovani, G. Di Guglielmo, and L. P. Carloni, High-Level Synthesis
of Accelerators in Embedded Scalable Platforms, ASPDAC 2016]

From SystemC Specification to Alternative RTL
Implementations via High-Level Synthesis

Page 18©Luca Carloni – Columbia University

SC_MODULE(mac)

P

rst

clk

in_coeff

in_data

out_data

+×
P

P

P

Pacc = 0;

while(true) {

wait();

out_data = acc +

in_data * n_coeff;

}

SC_CTHREAD(beh)

High-Level Synthesis

Configuration Knobs
(HLS Script)

mpy

a
d
d
e
r

Clk

mpy

a
d
d
e
r

Clk

Virtual (or Logical)
Clock

Real (or Physical)
Clock

From SystemC to RTL via HLS:
Two Key Questions

Page 19©Luca Carloni – Columbia University

• In which sense each implementation is correct with
respect to the original specification?

• How to find the best implementation?

From SystemC to RTL via HLS:
Optimality

Page 20©Luca Carloni – Columbia University

• How to compare
various synthesized
implementations?

– in terms of cost

– in terms of
performance

• Which
implementation is
better?

• This implementation has
lower latency and lower
area but also runs at
lower (physical) clock
frequency

• This implementation runs at
higher (physical) clock
frequency and offers higher data
throughput but costs a bit more
area

SC_MODULE(mac)

P

rst

clk

in_coeff

in_data
out_data

+×
P

P

P

Pacc = 0;

while(true) {

wait();

out_data = acc +

in_data * n_coeff;

}

SC_CTHREAD(beh)

High-Level Synthesis

Configuration Knobs
(HLS Script)

mpy

a
d
d
e
r mpy

a
d
d
e
r

From SystemC to RTL via HLS:
Correctness

Page 21©Luca Carloni – Columbia University

• Which notion of
equivalence to use?
– between the

synthesized
implementation and
the original
specification

– among many
alternative
implementations?

• How to compare
the I/O traces of
the two
implementations?

inData inCoeff x outData

3 2 0 0

5 1 6 6

7 2 11 11

9 1 25 25

34 34

34 34

inData inCoeff y x outData

3 2 0 0 0

5 1 6 0 0

7 2 5 6 6

9 1 14 11 11

9 25 25

34 34

SC_MODULE(mac)

P

rst

clk

in_coeff

in_data
out_data

+×
P

P

P

Pacc = 0;

while(true) {

wait();

out_data = acc +

in_data * n_coeff;

}

SC_CTHREAD(beh)

High-Level Synthesis

Configuration Knobs
(HLS Script)

mpy

a
d
d
e
r mpy

a
d
d
e
r

Latency-Insensitive Design and
the Protocol & Shell Paradigm [Carloni et al. ’99]

Channels (short wires)

Channels (long wires)

Shells (interface logic blocks)

P1

P2

P3

P4

P5

P6

P7

Pearls (synchronous IP cores)

©Luca Carloni – Columbia University Page 22

Correct-by-Construction Design Methodology
Enables Automatic Wire Pipelining

Shells (interface logic blocks)

Channels (short wires)

Channels (long wires)

P1

P2

P3

P4

P5

P6

P7

Pearls (synchronous IP cores)

RS

RS
RS

RS

RS

RS RS

RS

Relay Stations

Relay Stations are sequential elements initialized with void data items
©Luca Carloni – Columbia University Page 23

Retrospective: Latency-Insensitive Design
[Carloni et al. ’99]

Page 24©Luca Carloni – Columbia University

C1

C2
C3

C4

C5

C6
C7

RS

RS

RS

RS
RS

Latency-Insensitive Design

• is the foundation for the flexible synthesizable RTL
representation

• anticipates the separation of computation from
communication that is proper of TLM with SystemC
– through the introduction of the Protocols & Shell paradigm

Benefits of the
Protocols & Shells Paradigm

Page 25©Luca Carloni – Columbia University

C1

C2
C3

C4

C5

C6
C7

RS

RS

RS

RS
RS

The Protocol & Shells Paradigm

• preserves modularity of synchronous assumption in
distributed environment

• guarantees scalability of global property by construction
and through synthesis

• simplifies integrated design & validation by decoupling
communication and computation, thus enabling reusability

• adds design flexibility up to late stages of the design
process

Example of ESP Accelerator Design: Debayer - 2

26©Luca Carloni – Columbia University

• The combination of the ESP interface and
the latency-insensitive protocol enable a
broad HLS-supported design-space
exploration

[C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, System-Level Optimization
of Accelerator Local Memory for Heterogeneous Systems-on-Chip, TCAD ’17]

• For example, for the compute process
– Implementation E is obtained by unrolling

loop L3 for 2 iterations, which requires 2
concurrent memory-read operations

– Implementation F is obtained by unrolling L3
for 4 iterations to maximize performance at
the cost of more area, but with only 2
memory-read interfaces; this creates a
bottleneck because the 4 memory operations
cannot be all scheduled in the same clock
cycle.

– Implementation G, which Pareto-dominates
implementation F, is obtained by unrolling L3
for 4 iterations and having 4 memory-read
interfaces to allow the 4 memory-read
operations to execute concurrently

ESP Accelerators: Hardware – Software Integration

Page 27©Luca Carloni – Columbia University

• Signal-level interface matches the accelerator interface of
the general model

• Memory-mapped configuration registers match those
defined in the accelerator model

• TLM abstractions and HLS allow the accelerator designer
to be unaware of the particular specification of the SoC
interconnection

caches

Controller

IRQ

Interconnect Interface and Queues

ESP
Services

Processor IP Socket

I$ D$

CPU IP

ESP modules

OS Drivers

ESP-lib.C-lib

Accelerated app.

ESP Processor Tile
with Software Socket

ESP Services

DMA Registers ControllerIRQ

Interconnect Interface and Queues

Accelerator IP
Pareto-optimal from HLSPLM

IP Socket Configurable ESP Accelerator Tile
with Hardware Socket

• ESP Linux modules allow the OS
to recognize the accelerators in
the ESP tiles…

• …and simplify the programming
of the ESP Linux device drivers
for the accelerators

• the user-provided accelerator-specific
code is less than 2% for the WAMI-app
device drivers

[L. P. Carloni, The Case for Embedded Scalable Platforms, DAC 2016]

“So, Why Most SoCs are Still Designed Starting from
Manually-Written RTL Code?”

• Difficult to pinpoint a single cause…
– Natural inertia of applying best practices
– Organization of engineering divisions are based on well-established

sign-off points of traditional CAD flows
– Limitations of existing SLD tools (for HLS, verification, virtual platforms..)
– Shortage of engineers trained to work at the SLD level of abstraction

28

• Arguably, a chicken-and-egg problem

– the lack of bigger investments in developing SLD methodologies
and tools is due to a lack of demand from engineers; conversely,
the lack of this demand is due to the shortcomings of current SLD
methodologies and tools

– Academia should take the lead in breaking this vicious cycle
©Luca Carloni – Columbia University

New Course

• CSEE-4868: System-on-Chip Platforms
– Foundation course on the programming, design, and validation of SoCs

with emphasis on high-performance embedded applications

– Offered at Columbia since Spring 2011, part of both the CS and EE
graduate programs

– Course Goals

• mastering the HW and SW aspects of integrating heterogeneous components
into a complete system

• designing new components that are reusable across different systems, product
generations, and implementation platforms

• evaluating designs in a multi-objective optimization space

– Has moved to the upper-level curriculum in Fall 2016

29©Luca Carloni – Columbia University
[L. P. Carloni, The Case for Embedded Scalable Platforms, DAC 2016]

Teaching System-on-Chip Platforms at Columbia:
The Fall-2015 Course Project in Numbers

Page 31©Luca Carloni – Columbia University

• At Columbia we developed the course
‘CSEE-6868 System-on-Chip Platforms’
based on the ESP Design Methodology

• The Fall-2015 Project by Numbers
– 21 student teams competed in designing a hardware

accelerator for the WAMI Gradient kernel during a
1-month period

– 661: Number of improved designs across all teams
– 31.5: Average number of improved designs per team
– 1.5: Average number of improved designs committed

each day per team
– 99: Total number of changes of the Pareto curve

over the project period
– 11: Final number of Pareto-optimal designs
– 26X: Performance range of final Pareto curve
– 10X: Area range of final Pareto curve

Scaling Up the Design Complexity:
The Fall-2016 Course Project

Page 32©Luca Carloni – Columbia University

• Fall-2016 New Features
– Cloud-based project environment
– Introduction of IP reuse and

compositional system-level design

• The Fall-2016 Project by Numbers
– 15 student teams competed

in designing a system
combining DCT and IDCT
accelerators

– 302: Number of improved
module designs across
all teams

– 20.5: Average number of
improved module designs
per team

– 12.1: Average number of
improved module designs
per day

– 20: Total number of days
when the Pareto curve of
the system changed

– 20: Final number of
Pareto-optimal designs

– 24X: System performance range
– 4X: System area range

Zoom Zoom Zoom

DCT

IDCT
System

Keep Scaling Up the Design Complexity:
The Fall-2017 Course Project

Page 33©Luca Carloni – Columbia University

• Competitive and
collaborative system-
level design-space
exploration of a CNN
accelerator

– partitions of the set of
student teams
compete on the
reusable design of an
given CNN stage

– all teams combine
their stage design with
the designs they
“license” for the other
stage to compete for
the design of the
overall CNN

Recent Industrial Advances: NVIDIA MatchLib

Page 34©Luca Carloni – Columbia University

In Summary

• Computer architectures are increasingly heterogeneous

• Heterogeneity raises design complexity

• Coping with complexity requires

1. raising the level of abstraction in hardware design and

2. embracing design for reusability

• High-level synthesis is a key technology to meet both requirements

• Flexible interfaces based on LID Protocols & Shells Paradigm are
critical for composing circuits synthesized with HLS

©Luca Carloni – Columbia University 35

Some Recent Publications

1. L. P. Carloni. The Case for Embedded Scalable Platforms DAC 2016. (Invited Paper).
2. L. P. Carloni. From Latency-Insensitive Design to Communication-Based System-Level Design The Proceedings

of the IEEE, Vol. 103, No. 11, November 2015.
3. E. Cota, P. Mantovani, and L. P. Carloni. Exploiting Private Local Memories to Reduce the Opportunity Cost of

Accelerator Integration. ICS 2016.
4. E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. An Analysis of Accelerator Coupling in

Heterogeneous Architectures. DAC 2015.
5. P. Mantovani, E. Cota, K. Tien, C. Pilato, G. Di Guglielmo, K. Shepard and L. P. Carloni. An FPGA-Based

Infrastructure for Fine-Grained DVFS Analysis in High-Performance Embedded Systems. DAC 2016.
6. P. Mantovani, E. Cota, C. Pilato, G. Di Guglielmo and L. P. Carloni. Handling Large Data Sets for High-

Performance Embedded Applications in Heterogeneous Systems-on-Chip. CASES 2016.
7. P. Mantovani, G. Di Guglielmo and L. P. Carloni. High-Level Synthesis of Accelerators in Embedded Scalable

Platforms. ASPDAC 2016.
8. L. Piccolboni, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. COSMOS: Coordination of High-Level Synthesis

and Memory Optimization for Hardware Accelerators. ACM Transactions on Embedded Computing Systems,
2017.

9. C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. System-Level Optimization of Accelerator Local
Memory for Heterogeneous Systems-on-Chip. IEEE Trans. on CAD of Integrated Circuits and Systems, 2017.

Available at www.cs.columbia.edu/~luca

36©Luca Carloni – Columbia University

