

DESIGN, AUTOMATION & TEST IN EUROPE

25 – 29 March, 2019 · Firenze Fiera · Florence · Italy The European Event for Electronic System Design & Test

XOR Gates in Emerging Technologies

Valentina Ciriani

Outline

- XOR's Role in New Technologies
- XOR Based Logic Synthesis
 - Two Level Logic
 - ESOP
 - Bounded Multilevel Logic
 - SPP
 - FSPP
 - Unbounded Multilevel Logic
 - BBDD (Biconditional BDD)
 - XAIG
 - Secure Two Parties Computation
 - Example of Logic Synthesis Problem with Free XORs

Post-CMOS nanotechnologies

Role of Logic Synthesis as


"enabler in the selection of post-CMOS technologies"

L.G. Amarù, P.-E. Gaillardon, S. Mitra, G. De Micheli. New Logic Synthesis as Nanotechnology Enabler. Proceedings of the IEEE, 2015

- Emerging nanothecnologies:
 - Graphene
 - Silicon nanowires
 - Carbon nanotubes
 - Organic FETs
 - Reversible logic
 - ..
- New computational paradigms:
 - Lattices
 - Quantum computing
 - Adiabatic computation
 - ..

XORs in new technologies

- CMOS technology:
 - NAND, NOR, INV (negative unate)
 - XORs are expensive gates
- New technologies:
 - Boolean comparator (XOR)
 - Majority voter
 - Lattices
 - ...

[L.G. Amarù, P.-E. Gaillardon, S. Mitra, G. De Micheli. New Logic Synthesis as Nanotechnology Enabler. *Proceedings of the IEEE*, 2015]

ESOP

- An Exclusive-Sum-Of-Products (ESOP) is an Exclusive-OR of products of literals
- Example:

$$\bar{x}_1 x_2 \oplus x_2 x_3 \oplus x_4 \bar{x}_5 x_6$$

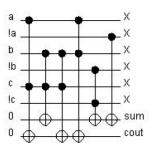
- Several heuristic synthesis methods have been proposed
 - EXORCISM
 - EXMIN

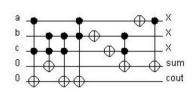

ESOP

- SOP (Sum of Product) covering:
 - each vector x such that f(x)=1 is covered by at least one product
 - each vector x such that f(x)=0 is not covered

- ESOP covering:
 - each vector x such that f(x)=1 is covered by an odd number of products
 - each vector x such that f(x)=0 is covered by an even number of products

ESOP for quantum computing


- ESOP covering:
 - Can be used as the starting expression to generate a cascade of reversible Toffoli gates



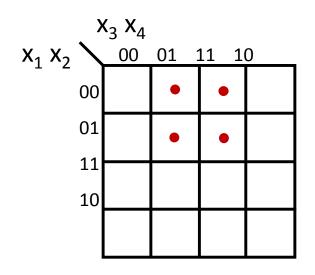
Example (full adder)

1-1 01 -11 11 11- 01 -00 10 0-- 10

ESOP form

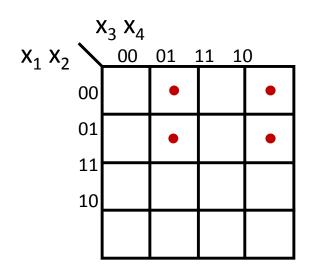
Cascate of Toffoli gates

[K. Fazel, M. A. Thornton, J. E. Rice, ESOP-based Toffoli Gate Cascade Generation, 2007]


SPP forms

Sum of Pseudoproducts (SPP)

$$(x_1 \oplus x_2 \oplus x_3) (x_1 \oplus \overline{x_4}) x_3 + (x_1 \oplus x_2 \oplus x_3 \oplus \overline{x_4}) \overline{x_5} + x_1$$
Pseudoproduct
(AND of XORs of literals)


- An SPP form is an OR of ANDs of XORs of literals
- The SPP problem: find an SPP form, covering a function F, with the minimum number of literals/pseudoproducts

Cubes

Product: $\overline{x_1} x_4$

Pseudocubes

pseudoproduct: $\overline{x_1}(x_3 \oplus x_4)$

Pseudocubes and Affine Spaces

• Theorem:

Pseudocubes (SPP) ⇔ Affine Spaces

Corollary:

Cubes (SOP) \subseteq Affine Spaces

SPPs are a direct generalization of SOP forms

SPP forms

Advantages

- Compact expressions
- Good testability of EXORs
- Three levels of logic

Disadvantages

- Unbounded fan-in EXORs
- Impractical for many technologies
- Huge minimization time

Solving the Disadvantages of SPP

2-SPP forms:

are OR of ANDs of 2-EXORs of literals:

$$(x_1 \oplus x_2) (x_1 \oplus \overline{x_5}) x_3 + (x_1 \oplus \overline{x_4}) \overline{x_5} + x_1$$

- are still very compact
 - Only 4% more literals than SPP expressions
- have a reduced minimization time (heuristic)
 - 92% less time than SPP synthesis
- are practical
 - EXOR gates with fan-in 2 are typically easier to implement

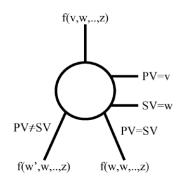
2-SPP Minimization Problem

Problem: Find a sum of 2-pseudoproducts (2-SPP form) that is minimal w.r.t. the number of literals/products

- Exact minimization: Similar to Quine-McCluskey algorithm for SOPs
- Heuristic minimization: direct generalizations of classical two-level heuristic minimization
 - MERGE
 - EXPAND
 - EXOR-EXPAND
 - IRREDUNDANT
 - REDUCE

ESPP forms

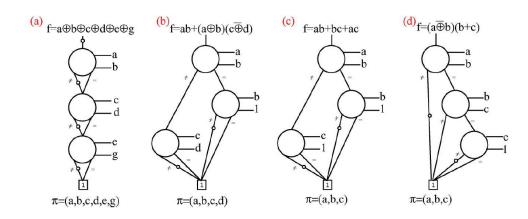
• Exclusive Sum of Pseudoproducts (ESPP) forms are :


$$(x_1 \oplus x_2 \oplus x_3) (x_1 \oplus \overline{x_4}) x_3 \oplus (x_1 \oplus x_2 \oplus x_3 \oplus \overline{x_4}) \overline{x_5} \oplus x_1$$
Pseudoproduct

An ESPP form is a XOR of ANDs of XORs of literals

BBDD

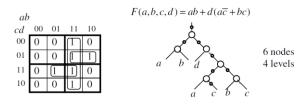
- Biconditional Binary Decision Diagrams:
 - $f(v,w,..,z) = (v \oplus w) f(w',w,..,z) + (v \overline{\oplus} w) f(w,w,..,z)$


 The reduction rules are a generalization of the ones for ROBDDs

[Amarù et al. Proceedings of the IEEE, 2015]

- Under ordering and reduction rules, ROBBDDs are unique (canonical)
- Efficient manipulation of ROBBDDs, based on the biconditional expansion
- A ROBBDD can be transformed in a diagram of MUXs controlled by XNORs of variables

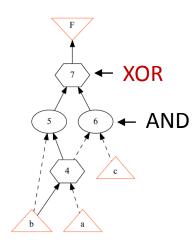
BBDD



[L.G. Amarù, P.-E. Gaillardon, S. Mitra, G. De Micheli. New Logic Synthesis as Nanotechnology Enabler. *Proceedings of the IEEE*, 2015]

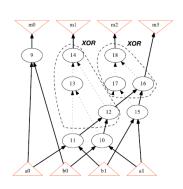
AND Inverter Graphs

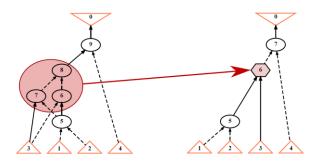
- AIG is an acyclic combinational Boolean network composed of
 - 2-AND gates (internal nodes)
 - inverters (edges)


- Very used representation for Boolean functions
- ABC (R. Brayton, A. Mishchenko)

[R. Brayton, A. Mishchenko, ABC: An Academic Industrial-Strength Verification Tool, CAV 2010]

XAIG


- XAIG is an acyclic combinational Boolean network composed of
 - 2-AND gates (internal nodes)
 - 2-XOR gates (internal nodes)
 - inverters (edges)



[I. Halecek, P. Fiser, J. Schmidt, Towards AND/XOR balanced synthesis: Logic circuits rewriting with XOR, Microelectronics Reliability, 2018]

XAIG: Algebraic rewriting

- Algebraic rewriting approaches:
 - $A \oplus B = !(A \wedge B) \wedge !(!A \wedge !B)$
 - $!(A \oplus B) = !(!A \wedge B) \wedge !(!A \wedge B)$

[I. Halecek, P. Fiser, J. Schmidt, Towards AND/XOR balanced synthesis: Logic circuits rewriting with XOR, Microelectronics Reliability, 2018]

[C. Yu, M. Ciesielski, and A. Mishchenko Fast Algebraic Rewriting Based on And-Inverter Graphs, IEEE TCAD 2018]

XAIG: Boolean approach

 Let G be a two-input gate, a similar gate to G is a two-input gate G_s (e.g., EXOR):

$$G(x, y) = G_s(x, y)$$
 for all (x, y) but one

- A gate G in a circuit C is swappable into a gate G_s, if
 - G is similar to G_s (the different input is (x,y))
 - the input configuration (x,y) never occurs as an input to G in C

Α	В	А⊕В	!(A∧B)	A∧!B	!A∧B	!(!A∧!B)
0	0	0	1	0	0	0
0	1	1	1	0	1	1
1	0	1	1	1	0	1
1	1	0	0	0	1	1

XAIG: Boolean approach

 Let G be a two-input gate, a similar gate to G is a two-input gate G_s (e.g., EXOR):

$$G(x, y) = G_s(x, y)$$
 for all (x, y) but one

- A gate G in a circuit C is swappable into a gate G_s, if
 - G is similar to G_s (the different input is (x,y))
 - the input configuration (x,y) never occurs as an input to G in C

Α	В	а⊕в	!(A∧B)	A∧!B	!A∧B	!(!A∧!B)
0	0	0	-	0	0	0
0	1	1	1	-	1	1
1	0	1	1	1	-	1
1	1	0	0	0	1	-

Satisfiability don't cares (SDCs)

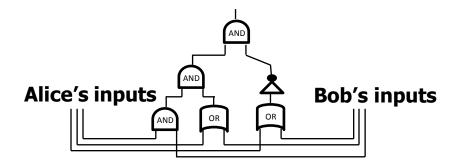
Boolean test (BDDs)

XAIG: future direction

- Proposed methods (algebraic and Boolean) are:
 - Rewriting techniques
 - Postprocessing algorithms on a given AIG
- Future direction:
 - Direct minimization method for XAIG

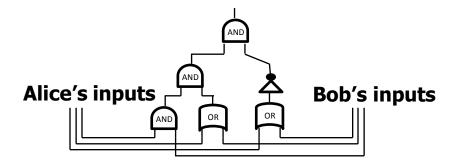
Secure two-party computation

Secure two-party computation protocols:


- allow two parties to compute any function F on their respective inputs
- while maintaining the privacy of their input values:
 - such that only the resulting output is shared among the parties
 - and nothing is known about the other party's input

Example: Millionaire

- Alice and Bob
 - are millionaires
 - wish to determine who has more money
 - don't wish to reveal her or his precise wealth to the other
- Inputs:
 - Alice \$ 2,000,003
 - Bob \$ 2,000,002
- Output: Alice


Yao's protocol

Convert the function into a Boolean circuit

Yao's protocol

- Bob ad Alice cooperate in defining the solution by:
 - Exchanging limited information (communication protocol)
 - Computing the output of each gate

EXOR-free protocol

- Kolesnikov and Schneider (2008) show that 2-input EXOR gates can be computed for "free":
 - 2-EXORs evaluated without the communication protocol
 - Bob computes the result by simply performing the 2-EXOR of the encrypted input values
- Problem: find a Circuit with a minimum number of non-XOR gates
 - ESOP forms
 - XAIG
 - Multivalued circuits

Conclusion

- Emerging technologies need new logic synthesis methods defined on new models of logic devices
- Since several technologies rely on comparators:
 - XOR gates should be taken into consideration in the new logic synthesis methods
- New nice problems to solve!

Thanks!