
Systematic Approaches to
Approximate Logic Synthesis

Quo Vadis, Logic Synthesis Workshop 2019

SHERIEF REDA
BROWN UNIVERSITY

M A R C H 2 0 1 9

This research is partially supported by NSF grants 1420864 and 1814920.

Based on
• S. Hashemi, H. Tann and S. Reda, "BLASYS: Approximate Logic Circuit Synthesis Using Boolean Matrix Factorization," DAC, 2018.
• S. Hashemi and S. Reda, "Generalized Matrix Factorization Techniques for Approximate Logic Synthesis," to DATE, 2019.
Ack: NSF grant #1814920

The Case for Approximate Computing

Many algorithms and circuit implementations in machine learning, signal processing,
computer vision and cognitive computing have inherent error resiliency:
• Noisy inputs
• Approximate algorithms
• Loose constraint on output.

Leverage this tolerance to trade-off accuracy for hardware resources (e.g. Design
area, power consumption, and delay).

Design Class of Application #Lines Area (um2) Power (mW) Quality Measure Quality
FIR filter Signal Processing 265 16711.18 0.94 MSE 98.63%
perceptron Machine Learning 188 19183.12 1.28 classification error 82.88%

block matching Computer Vision 1277 42532.87 5.51 PSNR 30.44 dB

TABLE I. CHARACTERISTICS OF TEST CASES.

0.0

5.0

10.0

15.0

20.0

25.0
30.0 30.1 30.2 30.3 30.4 30.5 30.6

Po
w

er
 S

av
in

g
(%

)

PSNR (dB)

Block Matcher
-10.0

0.0

10.0

20.0

30.0

40.0
75.0 80.0 85.0 90.0 95.0 100.0

Po
w

er
 S

av
in

g
(%

)

Accuracy (%)

FIR
0.0

10.0

20.0

30.0

40.0

50.0

60.0
60.0 65.0 70.0 75.0 80.0 85.0

Po
w

er
 S

av
in

g
(%

)

Accuracy (%)

Perceptron

Fig. 3. Results from various approximate designs and the Pareto Frontier for the three test benches.

3. Block Matcher: Block matching is a technique commonly
used in motion estimation and video compression applications.
Block matching partitions a given frame into non-overlapping
rectangular blocks and tries to find the block from the ref-
erence frame in a given search range that best matches the
current block. The measure of similarity between the blocks
is computed by sum of the differences. For our design, we
perform full search block matching over a search window in
a reference frame to determine the best match for a block in a
current frame. Our particular test case works on 16⇥16 block
sizes from a 352⇥288 frame sequence. The quality of a design
is assessed using the PSNR.

The main hardware design characteristics and quality of
these test benches are summarized in Table I. For each design,
a total of six data sets were used to train and evaluate ABACUS.
Three data sets were to used to generate the approximate
designs as described in Section III, and another three were
used to assess the accuracy of ABACUS for the experiments
of this section. Using different data sets in the experimen-
tal results eliminates possibility of generating approximate
variants overfitted for one particular set of input data. In all
experiments, we report the average accuracy of the three data
sets. We used weights of 0.8, 0.12 and 0.08 as ↵1, ↵2 and ↵3

respectively in Equation 1 for fitness evaluation. ABACUS was
applied to the computational data-path parts of the designs,
but the control signals in the designs were not modified.
Using ABACUS, we were able to automatically apply multiple
iterations of transformations on each test bench to identify the
approximate designs with optimal trade-offs between accuracy
and power. Figure 3 plots the accuracy vs. power saving results
for all approximate designs generated by ABACUS for the
perceptron, block matching, and FIR designs, respectively. The
x-axis gives accuracy and the y-axis gives power savings. A
subset of all these points create a Pareto Frontier (solid red
line), where the frontier points do not dominate each other
in both power and accuracy. The runtimes of ABACUS are
mostly dominated by the runtime of the ASIC design flow.
On a Intel Core 2 Quad machine at 2.40 GHz with 6 GB
RAM, it took 140 seconds, 130 seconds and 529 seconds for
generating one instance of the FIR, perceptron and the block
matching benchmarks respectively. A total of 10 generations
with 5 iterations were run for the FIR design and the perceptron

Design #Iter Accuracy Accuracy Power Area
Threshold Achieved Saving Saving

FIR 10 90.9% 93.9% 10.4% 15.8%
perceptron 10 76.2% 82.9% 33.2% 38.3%

blockmatching 15 28.0 dB 30.0 dB 23.0% 19.4 %

TABLE II. RESULTS FROM ABACUS FOR THE THREE TEST BENCHES
FOR AN ALLOWED 8% DEGRADATION TO ACCURACY.

design and 15 generations with 6 iterations were run for the
block matching design.

In Table II, we highlight results from the best approximate
designs that allowed for a maximum of 8% degradation in ac-
curacy compared to the original designs. The results show that
we are able to attain significant savings in power consumption
(ranging from 10% to 33%) with these approximate designs
with very modest degradation in accuracy. Figure 4 illustrates
the results from the perceptron approximate design of Table II.
Figure 4.a gives the true classification of the data points into
the two classes (class A and class B). Figure 4.b gives the
classification of both the original and approximate hardware
(HW) designs on the same data points. The true-true case is
when both HW designs correctly predicted the classes of the
data points, while the false-false case is when HW designs
incorrectly predicted the classes of the data points. The false-
true case is when the original design predicted incorrectly, but

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

True−True True−False False−True False−False

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Class A Class B

(a) (b)

Fig. 4. (a) Classification of input data into two classes, (b) comparison
between original and approximate designs.

2

Introduction

Generate Approximate Variants from any Arbitrary input circuit.
◦ No Application Knowledge required.
◦ Automated Flow.

Goal of Approximate Synthesis

module DUT(in1,in2,out);
…
…
endmodule

Approximate
Synthesis

Flow

3

DUT.v

DUT_approx_1.v
DUT_approx_2.v

DUT_approx_3.v

Evaluation

testbench_1.v
testbench_2.v

testbench_3.v

Boolean Matrix Factorization (BMF)
Special case of Non-negative matrix
factorization (NNMF).
Factorizes a matrix to two smaller
matrices such that:

𝑀 ≈ 𝐵×𝐶
∀𝑖, 𝑗 𝑚+,,, 𝑏+,,, 𝑐+,, ∈ 0,1

𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 (Multiply → AND,
and Addition → OR)

Applications in:
◦ Low Dimension Data Representation
◦ Document Classification
◦ Language Processing

4

𝒇
Factorization Degree (f)

determines the degree of
approximations.

How does Boolean matrix factorization work?

5

• BMF is NP-Hard.
• Solutions are based on heuristics.
• Heuristics solving: 𝑎𝑟𝑔𝑚𝑖𝑛=,>|𝑀 ⊗ 𝐵×𝐶 |

0. Initialize B randomly

Iterate until converge:

1. Fix B, Find C such that 𝑎𝑟𝑔𝑚𝑖𝑛>|𝑀 ⊗ 𝐵×𝐶 |

2. Fix C, Find B such that 𝑎𝑟𝑔𝑚𝑖𝑛=|𝑀 ⊗ 𝐵×𝐶 |

Proposed approximate synthesis using BMF

6

BMF

original
circuit

compressor
circuit

DC compiler

z1
z2
z3
z4 0

z1

z2
z3
z4

decompressor circuit

Approximate circuit

Proposed Approximate Logic Synthesis Using BMF
Utilize BMF for generic approximate
circuit synthesis.
Approximate Synthesis Flow:
1. The truth table of the arbitrary

input circuit is generated.
2. The truth table is passed to a BMF

algorithm to generate two
factorized matrices.

3. Two factorized matrices are
mapped to hardware:

• Compressor Circuit is the truth table of
a simpler logic with fewer outputs.

• Decompressor Circuit is a simple OR
gate network.

BMF
Algorithm 𝒇

Compressor
Circuit

Decompressor
Circuit

𝒇

BLASYS

7

M

B

C

An Example

8

Approxim
ation

𝒇 = 𝟑𝒇 = 𝟐𝒇 = 𝟏

Compressor

Towards an effective scalable scheme
1. Field and semi-ring implementations.

2. Truth table folding.

3. Arbitrary QoR.

4. Scalability via circuit breakdown and design space exploration.

9

1 1 1 0 1
1 0 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 1

1 1 0
0 0 1
1 0 0
0 1 0
1 0 1

1 0 1 0 1
0 1 0 0 1
0 0 0 1 0

1 1 1 0 1
0 0 0 1 0
1 0 1 0 1
0 1 0 0 1
1 0 1 1 1

1 0 0
1 1 0
1 1 1
0 1 1
0 0 1

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1

1 1 1 0 0
1 0 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 1

(a) input matrix (b) factorization using semi-ring Boolean algebra (c) factorization using field modulo-2 algebra

(a) original truth table

(b) folded truth table (k = 4)

m outputs

mk outputs

2n
en

tr
ie

s

2n-
lo

g(
k)

en
tr

ie
s

! = #

! = $

! = %

! = #

! = &

! = '

! = #

10

1 1 1 0 1
1 0 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 1

1 1 0
0 0 1
1 0 0
0 1 0
1 0 1

1 0 1 0 1
0 1 0 0 1
0 0 0 1 0

1 1 1 0 1
0 0 0 1 0
1 0 1 0 1
0 1 0 0 1
1 0 1 1 1

1 0 0
1 1 0
1 1 1
0 1 1
0 0 1

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1

1 1 1 0 0
1 0 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 1

(a) input matrix (b) factorization using semi-ring Boolean algebra (c) factorization using field modulo-2 algebra

Outputs in the decompressor circuits do not
need to be all implemented using XORs or OR,
every output could be implemented
independently by XORing or Oring the factors
from the decompressor circuit that reduces
that minimizes the error.

1. GF(2) Semi-ring and field implementations

Compressor
Circuit

𝒇

decompressor circuit

2. Truth table folding

11

(a) original truth table

(b) folded truth table (k = 4)

m outputs

mk outputs

2n
en

tr
ie

s

2n-
lo

g(
k)

en
tr

ie
s

• The number of rows in the truth table
of a circuit grows exponentially as a
function of the number of circuit
inputs à tall-and-skinny matrix, with
possibly lack of common bases
between different outputs.

• Fold a tall-and-skinny input matrix. By
dividing the number of rows by half,
by dividing the input matrix into two
equal sub-matrices and concatenating
the two sub-matrices in a column-wise
fashion.

2. Modified compressor-decompressor circuit

12

. . .

n
–l

og
(k

) i
np

ut
s

. . .

m
 outputs

. . .

compressor circuit

f

. . .

m
k

decompressor circuit
. . .

. . .

. .
 .

extended decompressor circuit

lo
g(

k)
 in

pu
ts

. . .

Impact of various approximation choices

13

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

N
or

m
al

ize
d

Ha
m

m
in

g
Di

st
an

ce
 %

Area Utilization %

OR/XOR-Based
OR/XOR-Based + Folding
OR-Based
OR-Based + Folding
Original Design
XOR-Based
XOR-Based + Folding

Circuit: x2 – 10 inputs/7 outputs à
truth table enumerated and error
metric is Hamming distance between
original circuit and approximate circuit
• OR decompressor
• XOR decompressor
• OR/XOR decompressor
• with and without Folding
• Factorization degree

• 12% reduction in area with 8%
inaccuracy

• 50% reduction in area with 13%
inaccuracy

3. Arbitrary QoR
• Many approximate circuits have outputs that should be

interpreted numerically.
• Heuristics solving:

𝑎𝑟𝑔𝑚𝑖𝑛=,>|𝑀 ⊗ 𝐵×𝐶 |
• Therefore uniform cost function.

Ø Modify the algorithms to have a exponentially weighted
cost function à Output bits at higher indices have higher
weights

𝑎𝑟𝑔𝑚𝑖𝑛=,>| 𝑀 ⊗ 𝐵×𝐶 𝑤|

14

4. Circuit Breakdown

Design Space Exploration Needed.

15

The size of the truth table grows exponentially as a factor of number
of inputs à decompose the circuit into subcircuits with max input
size.

4. Design Space Exploration Heuristic

𝒇 = 𝟕

𝒇 = 𝟕

𝒇 = 𝟔

𝒇 = 𝟗

𝒇 = 𝟒

𝒇 = 𝟓

𝒇 = 𝟖

A local search based heuristic:
• Start with all subcircuits at
highest accuracy.

• One by one add 1 degree of
approximation to each subcircuit.
• Select the best variant as the
parent for the next generation.

• Repeat until the accuracy is
lower than threshold.

𝒇 = 𝟖

𝒇 = 𝟕

𝒇 = 𝟔

𝒇 = 𝟗

𝒇 = 𝟒

𝒇 = 𝟓

𝒇 = 𝟖

𝒇 = 𝟖

𝒇 = 𝟔

𝒇 = 𝟔

𝒇 = 𝟗

𝒇 = 𝟒

𝒇 = 𝟓

𝒇 = 𝟖

𝒇 = 𝟖

𝒇 = 𝟕

𝒇 = 𝟓

𝒇 = 𝟗

𝒇 = 𝟒

𝒇 = 𝟓

𝒇 = 𝟖

𝒇 = 𝟖

𝒇 = 𝟕

𝒇 = 𝟔

𝒇 = 𝟖

𝒇 = 𝟒

𝒇 = 𝟓

𝒇 = 𝟖

𝒇 = 𝟖

𝒇 = 𝟕

𝒇 = 𝟔

𝒇 = 𝟗

𝒇 = 𝟑

𝒇 = 𝟓

𝒇 = 𝟖

𝒇 = 𝟖

𝒇 = 𝟕

𝒇 = 𝟔

𝒇 = 𝟗

𝒇 = 𝟒

𝒇 = 𝟒

𝒇 = 𝟖

𝒇 = 𝟖

𝒇 = 𝟕

𝒇 = 𝟔

𝒇 = 𝟗

𝒇 = 𝟒

𝒇 = 𝟓

𝒇 = 𝟕

𝒇 = 𝟖

𝒇 = 𝟕

𝒇 = 𝟔

𝒇 = 𝟖

𝒇 = 𝟒

𝒇 = 𝟓

𝒇 = 𝟖

16

Benchmarks

6 benchmarks ranging in
number of inputs/outputs
and hardware metrics.

Designs are coded in Verilog
and synthesized using
Synopsys DC compiler with
an industrial 65-nm standard
cell library at the typical
process corner.

Error metric: average relative
error (average)

17

Name Function I/O
Accurate Design Metrics

Area
(um2)

Power
(uW)

Delay
(ns)

Adder32 32-bit Adder 64/33 320.8 81.1 3.23

Mult8 8-bit Multiplier 16/16 1731.6 263.5 2.03

BUT Butterfly Structure 16/18 297.4 80.6 1.79

MAC Multiply and accumulate
with 32-bit accumulator

48/33 6013.1 470.5 2.36

SAD Sum of absolute
differences

48/33 1446.5 195.1 2.43

FIR 4-Tap FIR Filter 64/16 8568.0 466.3 1.56

Power reductions from proposed method

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

Adder32 Mult8 BUT MAC SAD FIR

OR OR/XOR +Folding

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

Adder32 Mult8 BUT MAC SAD FIR

OR OR/XOR +Folding

5% inaccuracy threshold 10% inaccuracy threshold

On average 27% and 38% reductions in total power

Results from design space exploration

Comparison to Previous Work
Threshold 5% Threshold 25%

Area Savings (%) Area Savings (%)

BLASYS SALSA [1] BLASYS SALSA [1]

Adder32 48.10% 20.5% 52.20% 23.2%

Mult8 29.00% 1.8% 65.60% 8.9%

BUT 7.90% 5.0% 31.90% 24.7%

MAC 45.20% 1.7% 63.60% 8.2%

SAD 30.20% 3.3% 33.20% 15.8%

FIR 20.10% 3.2% 35.80% 15.8%

20

Average improvement:
~ 24%

Average improvement:
~ 29%

[1] S. Venkataramani, et al., “SALSA: Systematic logic synthesis of approximate circuits,” DAC Design Automation Conference, 2012.

Conclusions
• We proposed to use Boolean matrix factorization (BMF) for an

automated approach to the approximate synthesis problem.

• Examined both modulo-2 and semi-ring implementations.

• Truth table reshaping for more balanced compressor-decompressor
architecture.

• Introduced weighted cost functions for better error metric

• Circuit breakdowns and design space exploration methods.
• For an error bound of 5%, our methodology delivers an average of

27% power reduction.

21

Thank you…
QUESTIONS?

22

EXTRA SLIDES:

23

Approximation Stack

Introduction 24

Application (Software) Level
• Loop Perforation
• Computation Skipping

Instruction Set Architecture
• Approximate CPUs
• Approximate DSP

Architectural Level Approximations
• Approximate Arithmetic
• Approximate Synthesis

Device Level Approximations
• Voltage Overscaling (VOS)

Mapping Decompressor to Hardware

25

Weighted QoR Results
The results for Mult8
comparing:
◦ Uniform QoR (UQoR)
◦ Weighted QoR (WQoR)

Consistent Benefits In
All Error Metrics.

Approximate Synthesis 26

Cost-Accuracy Trade-offs

Approximate Synthesis 27

Runtime
Runtime dominated by the accuracy simulation of the intermediate
points.
For example, in our experiments and in the case of the Adder32, the
simulation takes about 11 Seconds (using 1 million samples) for each
design point, while the BMF algorithm for all the subcircuits takes
0.35 Seconds.

