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DNA Storage
Nucleotides: },,,{ GTCA

DNA: string of nucleotides



DNA Storage: 200 Petabytes per gram



DNA Synthesis



DNA Synthesis

Synthesis rate: few bytes per minute.
Synthesis cost: $1000’s per kilobyte.



Our Approach: Use Existing Native DNA

The storage medium: E. coli K-12

Synthesis rate:  Megabytes per second.
Synthesis cost: $1 per megabyte (or less).

Fixed sequence of A, C, T, G’s – so nothing is stored!



Our Storage Modality: “Nicks”
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A cut represents a 1; absence of a cut a 0.

Gene editing with CRISPR/Cas9 or PfAgo



Our Storage Modality: “Nicks”
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Gene editing with CRISPR/Cas9 or PfAgo

↔

• Use multiple turnover nickase (one molecule can create ~50 nicks)
• Can create multiple nicks in parallel.
• Separate DNA into different wells; nick independently.



Objectives:
• Leverage the high-density of storage with effective 

computation.
• Perform “computation in memory” to reduce I/O 

operations.
• Integrate storage with data-intensive algorithms, such 

as machine learning. 

Motivation:

• While DNA storage might achieve densities of 100’s 
of petabytes/gram, the I/O operations are slow.

• Techniques such as data aggregation and 
“computation-in-memory” could reduce the I/O 
requirements.

• The paradigm might be most effective for applications 
that generate large volumes of static data.

Computation
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• Instead of viewing memory as a place where we 
merely store information, can exploit the physics of 
DNA storage to implement high-level computational 
primitives. 

• The result of the computation is also stored in the 
memory devices.

• Concept is loosely analogous to by how the brain 
computes.

In-Memory Computing
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“In-memory computing” or “computational memory” is 
an emerging paradigm that exploits the physical 
properties of memory devices for both storing and 
processing information. (Contrast with von 
Neumann systems which shuttle data back and forth 
between memory and the computing unit.)



1. How to compute functions with stochastic logic:
2. How to implement stochastic logic with DNA strands:

encode as fractional concentrations. 
3. How to obtain DNA strands from DNA complexes with “nicks”:

concept of probes.
4. How to transform the DNA strands: 

with strand displacement cascades. 
5. How to scale the concentration of DNA strands:

with competitive strand displacement.

Concepts Needed



Demonstrate “in-memory” computation of non-trivial, interesting functions. 
1. First exhibit simple computational primitives: multiplication and inversion.
2. Next, develop a methodology to implement polynomials.
3. Finally, develop a method to implement non-polynomial functions via polynomial approximations.

Objectives
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Concept 1:
Stochastic Logic



Stochastic Logic
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A real value x in [0, 1] is represented by a sequence of 
random bits, each of which has probability x of being one 
and probability of  1 − x  of being zero.

…,0,1,0,1,1,0,0,1,0,0,0,1,1,1,0,0,…

x = 7/16

Permits complex mathematical functions to be implemented 
with very few transistors: compared to conventional design 
methodologies, reduces area by 95% to 98%.

Insect-sized UAVs, 
Harvesting Energy 
from Small Solar 
Cells 

Implantable 
Biomedical Devices, 
Harvesting Energy 

from Movement 

Ultra Low Power Digital 
Circuitry for Communications 
and Image/Video Processing



Fractional Encodings
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AND

A
B

C
1,1,0,0,0,0,1,01,1,0,1,0,1,1,1

1,1,0,0,1,0,1,0

a = 6/8

b = 4/8

c = 3/8

Assume two input bit streams are independent

6/8 · 4/8 = 3/8 

Computes on probabilities,
or equivalently, fractions. 
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A
B

C

Multiplication (Scaled) Addition

ba
BPAP

CPc

=
=
=

)()(
)(

)
)1(

()](1[)()(
)(

b sas
BPSPAPSP

CPc

–+=
–+=

=

A

B
C

MUX

S

0

1

Arithmetic Operations



Stochastic Logic
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Probability values are the input and output signals.

combinational
circuit



Probability values are the input and output signals.

1,1,0,1,0,1,1,0…

1,0,0,0,1,1,0,0,…

0,1,1,0,1,0,1,0,…

0,1,1,0,1,0,0,0,…

1,0,1,0,1,0,1,0,…

1,1,1,1,1,1,1,1,…

serial bit streams

combinational
circuit

Stochastic Logic



combinational
circuit

Probability values are the input and output signals.

parallel bit streams
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Stochastic Logic



Probability values are the input and output signals.

0.7 0.616combinational
circuit

Stochastic Logic



Probability values are the input and output signals.

t

Functions of a  probability value t.

3.08.08.0 2 +- ttcombinational
circuit

Stochastic Logic



Synthesizing Logic that Generates Probabilities
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History

• Revisited by Brown and Card the Neural 
Networks Community in the 1990’s.

• Ideas first proposed by Gains and Poppelbaum
in the late 1960’s.

• Work by my group (W. Qian’s Ph.D.) in 2008 
reignited interest:
Proposed the first general synthesis methodology.
270 Google Scholar Citations 



Comparison of Encoding

Spectrum of Encoding

Binary Radix Encoding Stochastic Encoding

Binary Radix Encoding Stochastic Encoding

Circuit Area Large Small

Fault
Tolerance Bad Good

Delay Short Long

(Positional) (Uniform,
Long Stream)

(Not compact,
Long Stream)

(Compact,
Efficient)

(Positional, 
Weighted) (Uniform)



Concept 2:
Encoding as Fractional 

Concentrations



Fractional Encodings as Concentrations
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• A variable is associated with nicking or 
not nicking DNA at a given position.

• Its value is a fraction between 0 or 1 
relative to a maximum concentration.

• To set the value, separate a solution of 
DNA strands into two different wells; 
nick the strands in one well at a 100% 
success rate; do not nick the strands in 
the other well; then mix the contents 
of the wells together at the desired 
proportion.

• “Multiplication” is achieved by 
concatenating these operations.



• Suppose there are two nickable locations A and B on a DNA strand. Separate; nick at A; mix 
with proportion a; separate; nick at B; mix with proportion b. Then use a probe to release 
the strand AB. The concentration of AB should be  a × b. 

• This method can be extended to an arbitrary cascade of multiplication operations.

Multiplying using multiple nicks
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Concept 3:
From Nicks to Strands
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From Nicks to Strands

Suppose there are multiple nicks on a 
DNA strand. A probe that is 
complimentary to the strand causes 
the nicked strand to release substrands
(shown in red and blue).
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From Nicks to Strands

Suppose there are multiple nicks on a 
DNA strand. A probe that is 
complimentary to the strand causes 
the nicked strand to release substrands
(shown in red and blue).



Concept 4:
Transforming DNA Strands



For a review see D. Y. Zhang and G. Seelig, Nature Chemistry (2011)
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RNA sequence:
5’-AAUUCAGAUCCACCCAAAGAG-3’

         1          2

Friday, January 24, 14Slides: Credit Georg Seelig



For a review see D. Y. Zhang and G. Seelig, Nature Chemistry (2011)
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Strand displacement is initiated at the single-stranded toeholds. Toehold binding is a reversible 
process.

DNA strand displacement mechanism

Friday, January 24, 14Slides: Credit Georg Seelig
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Strand displacement proceeds through a branch migration. Branch migration is a random walk.

DNA strand displacement mechanism

Friday, January 24, 14Slides: Credit Georg Seelig
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Release of the output strand is (almost) irreversible in the absence of a toehold for the reverse 
reaction. 

Signal/output
active 
toehold

DNA strand displacement mechanism

Friday, January 24, 14Slides: Credit Georg Seelig
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The sequences of inputs and outputs can be completely independent. 
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Concept 5:
Scaling DNA Strands



Scaling: Using Probabilistic Switch
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Competitive DNA Strand Displacement
(Wilhelm, Bruck, Qian, 2018)



Putting it all together:
Performing Computation



Performing Dot Product 𝑐 = ∑𝑎V ∗ 𝑏V
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• Build up each term 𝑎V ∗ 𝑏V through successive multiplication operations.
• Use a probe to release the required strands.
• Use buffer gates to convert each strand to a common output strand; its concentration is the result. 



• Build up each term 𝑎V ∗ 𝑏V through multiplication; leave toeholds as the result.
• For each potential toehold, prepare a reporter.
• Report result through florescence, which measures the sum of the concentration of the reporters.

Dot Product: Using florescence

50
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Building a polynomial function

• Build up each term through successive multiplication operations.
• Use a probe to release the required strands.
• Scale each term using competitive DNA strand displacement 

(into “positive” values P and “negative” values N.)
• Using strand displacement, execute the reaction P + N → Waste. 

The concentration of the leftover is the evaluated value of the 
polynomial function.



Example: 𝑓 𝑥 = 1 − 𝑥 + $3

4!
− $5

6!
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More Examples
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More Examples
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Function Truncated Maclaurin Series Total nicks 
needed

Parallel 
Read outs

Gates used in 
Stochastic 
computing
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Challenges
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• Reading without destroying data: how to translate data encoded with 
nicks into displacement strands without destroying the original nicked 
structure.

• Performing the requisite DNA strand-displacement operations: 
“leakage” and experimental artifacts present challenges for computations 
with more than 3 levels. 

• Performing the readout.
• Alternatively, re-encoding the results of “in-memory” computation.



Long-Term Goals
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• Demonstrate solutions to machine learning problems: 
core operations are matrix multiply and thresholding, i.e.,
𝑐hi = ∑V 𝑎hV ∗ 𝑏Vi followed by 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑐𝑖𝑗)

• Develop “in-memory” computation for ”big data”: leverage the high 
density of storage with DNA for applications with large volumes of data, 
but limited I/O requirements.


