On a Minimization of Variables to Represent Sparse Multi-Valued Input Decision Functions

Tsutomu Sasao Meiji University, Kanagawa, Japan

Outline of the Talk

- Introduction
- Definitions
- Minimization of Variables
- Removal of Inconsistent Instances
- Application 1: Mushrooms
- Application 2: Hepatitis
- Application 3: Breast Cancer
- Conclusions

Given two sample sets T and F, find a simple rule to distinguish them.

Multi-Valued Decision Function

$$f: P^n \to B,$$
 $P = \{0, 1, ..., p-1\},$
 $B = \{0, 1\}.$

$$T \cap F = \phi$$
, $T \subseteq P^n$, $F \subseteq P^n$.

(T,F): Training Data

(T,F) is totally defined if $T \cup F = P^n$.

(T,F) is partially defined if $T \cup F \subset P^n$.

$$\frac{|T|+|F|}{p^n} < 10^{-6}$$

$$T(f) = \{\vec{a} \in P^n \mid f(\vec{a}) = 1\}$$
, and ON-set $F(f) = \{\vec{b} \in P^n \mid f(\vec{b}) = 0\}$. OFF-set Given a partially defined function (T, F) , f is an extension of (T, F) , if $T(f) \supseteq T$, and $F(f) \supseteq F$.

X1:Physics, X2:Math, X3:English, X4:Art 2:Excellent, 1:Fair, 0:Poor

Let

$$T = \{(2, 2, 0, 1), (2, 1, 1, 2)\}$$
 and

$$F = \{(1,1,0,1),(0,1,1,2)\}$$
.

Then, the function f, where

$$T(f) = \{(2, *, *, *)\}$$
 and

$$F(f) = \{(1, *, *, *), (0, *, *, *)\}$$

is an extension of (T,F).

For subsets $U \subseteq P^n$, and $S \subseteq \{1, 2, ..., n\}$. The projection of U to S is the set $U|_S = \{\vec{a} \mid_S | \vec{a} \in U\}$.

Restriction

X1:Physics, X2:Math, X3:English, X4:Art 2:Excellent, 1:Fair, 0:Poor

Let
$$P = \{0,1,2\}$$
 and $n = 4$. Let $U = \{(1,2,0,1), (0,1,1,2), (2,0,1,2)\}$ and $S = \{2,3\}$.
Then, $U|_{S} = \{(*,2,0,*), (*,1,1,*), (*,0,1,*)\}$.

For a partially defined function (T,F), a subset $S \subseteq \{1,2,...,n\}$ is a support set if $T|_{S}$ and $F|_{S}$ are disjoint.

(T,F) can be represented by the variables for S.

X1:Physics, X2:Math, X3:English, X4:Art 2:Excellent, 1:Fair, 0:Poor

Let (T, F) be a function, where $T = \{(0,1,1,2), (1,2,0,1)\}$ and $F = \{(1,1,0,1), (0,1,2,2)\}.$ Then, $S=\{2,3\}$ is a support set, since $T|_{S}$ and $F|_{S}$ are disjoint, where $T|_{S} = \{(*, 1, 1, *), (*, 2, 0, *)\}, \text{ and }$ $F|_{S} = \{(*, 1, 0, *), (*, 1, 2, *)\}.$ The function is represented by two variables: $f = X_2^{\{2\}} X_3^{\{0\}} \vee X_2^{\{1\}} X_3^{\{1\}}.$

Minimization of Variables

Algorithm

- 1) For each pair (\vec{a}, \vec{b}) , in $\vec{a} \in T$ and $\vec{b} \in F$,

 make a clause $C(\vec{a}, \vec{b}) = z_1 \lor z_2 \lor \cdots \lor z_n$, $z_j = 0$ (if $a_j = b_j$), $z_j = y_j$ (if $a_j \neq b_j$).
- 2) For all the pairs (\vec{a}, \vec{b}) , in $\vec{a} \in T$ and $\vec{b} \in F$, make the product of the clauses: $R = \bigwedge C(\vec{a}, \vec{b})$.
- 3) Convert *R* into sum-of-products and simplify it.
- 4) A product with the fewest literals corresponds to a minimum support set.

Example

		X ₁	X_2	X_3	X ₄
Т	a ₁	1	2	0	1
	a_2	0	1	1	2
F	b ₁	1	1	0	1
	b_2	0	1	2	2

$$T|_{S} = \{(*,2,0,*),(*,1,1,*)\}.$$

 $F|_{S} = \{(*,1,0,*),(*,1,2,*)\}.$

$$C(\vec{a}_{1}, \vec{b}_{1}) = y_{2},$$

$$C(\vec{a}_{1}, \vec{b}_{2}) = y_{1} \lor y_{2} \lor y_{3} \lor y_{4},$$

$$C(\vec{a}_{2}, \vec{b}_{1}) = y_{1} \lor y_{3} \lor y_{4},$$

$$C(\vec{a}_{2}, \vec{b}_{1}) = y_{3},$$

$$R = y_{2}(y_{1} \lor y_{2} \lor y_{3} \lor y_{4})(y_{1} \lor y_{3} \lor y_{4})y_{3}$$

$$= y_{2}y_{3}$$

The minimum support set is $S=\{2,3\}$.

$$f = X_2^{\{2\}} X_3^{\{0\}} \vee X_2^{\{1\}} X_3^{\{1\}}$$

Minimization of Monotone Increasing Functions

 $f: P^n \to B$ is monotone increasing if $f(\vec{a}) \ge f(\vec{b})$ for any $\vec{a}, \ \vec{b} \in P^n$ such that $\vec{a} \ge \vec{b}$.

	X1	X2	X3
	2	1	1
Т	1	2	1
	1	1	2
	1	0	0
F	0	1	0
	0	0	1

X1:Physics, X2:Math, X3:English

2: Excellent, 1:Fair, 0: Poor

$$f_{1} = X_{1}^{\{2\}} X_{2}^{\{1\}} X_{3}^{\{1\}}$$

$$\vee X_{1}^{\{1\}} X_{2}^{\{2\}} X_{3}^{\{1\}}$$

$$\vee X_{1}^{\{1\}} X_{2}^{\{1\}} X_{3}^{\{2\}}$$

	X1	X2	X3
	2	1	1
Т	1	2	1
	1	1	2
	1	0	0
F	0	1	0
	0	0	1

X1:Physics, X2:Math, X3:English

2: Excellent, 1: Fair, 0: Poor

$$\begin{split} f_2 &= X_1^{\{1\}} X_2^{\{0\}} X_3^{\{0\}} \\ &\vee X_1^{\{0\}} X_2^{\{1\}} X_3^{\{0\}} \\ &\vee X_1^{\{0\}} X_2^{\{0\}} X_3^{\{1\}} \end{split}$$

	X1	X2	X3
	2	1	1
Т	1	2	1
	1	1	2
	1	0	0
F	0	1	0
	0	0	1

X1:Physics, X2:Math, X3:English

2: Excellent, 1: Fair, 0: Poor

$$f_{3} = X_{1}^{\{2\}} X_{1}^{\{1,2\}} X_{1}^{\{1,2\}}$$

$$\vee X_{1}^{\{1,2\}} X_{1}^{\{2\}} X_{1}^{\{1,2\}}$$

$$\vee X_{1}^{\{1,2\}} X_{1}^{\{1,2\}} X_{1}^{\{1,2\}}$$

$$\int_{3} (2,2,1) = 1$$

Decision of Entrance must be Monotone Increasing

	X1	X2	X3
	2	1	1
Т	1	2	1
	1	1	2
	1	0	0
F	0	1	0
	0	0	1

X1:Physics, X2:Math, X3:English

2: Excellent, 1:Fair, 0: Poor

$$f_4 = X_1^{\{1,2\}} X_2^{\{1,2\}} X_3^{\{1,2\}}$$

$$f_4(1,1,1) = 1$$

	X1	X2	Х3
	2	1	1
Т	1	2	1
	1	1	2
	1	0	0
F	0	1	0
	0	0	1

X1:Physics, X2:Math, X3:English

2: Excellent, 1: Fair, 0: Poor

$$f_5 = X_1^{\{1,2\}} X_2^{\{1,2\}} \vee X_2^{\{1,2\}} X_2^{\{1,2\}}$$
$$\vee X_1^{\{1,2\}} X_3^{\{1,2\}}$$

$$f_5(1,1,0)=1$$

	X1	X2	Х3
	2	1	1
Т	1	2	1
	1	1	2
	1	0	0
F	0	1	0
	0	0	1

X1:Physics, X2:Math, X3:English

2: Excellent, 1: Fair, 0: Poor

$$f_6 = X_1^{\{1,2\}} X_2^{\{1,2\}}$$

$$f_6(1,1,*)=1$$

Theorem

Let $T \cap F = \phi$, where $T, F \subseteq P^n$. Then, (T, F) has a monotone increasing extension iff there is no pair (\vec{a}, \vec{b}) , such that $\vec{a} \in T$, and $\vec{b} \in F$ and $\vec{a} < \vec{b}$.

Removal of Inconsistent Instances

Example: Inconsistent Pairs

		X1	X2	X3	X4
	a1	0	0	2	1
T	a2	0	0	1	2
	а3	1	1	0	0
	a4	2	2	2	2
	b1	2	1	0	0
F	b2	1	2	0	0
	b3	0	0	2	2
	b4	0	0	0	0

X1:Physics, X2:Math, X3:English, X4:Art 2:Excellent, 1:Fair, 0:Poor

$$a_3 < b_1$$

$$\vec{a}_3 < \vec{b}_2$$

$$\vec{a}_1 < \vec{b}_3$$

 $\vec{a}_2 < \vec{b}_3$

If there is any Inconsistency, then Professors may be sued.

Example: Inconsistent Pairs

		X1	X2	Х3	X4
	a1	0	0	2	1
Т	a2	0	0	1	2
	а3	1	1	0	0
	a4	2	2	2	2
	b1	2	1	0	0
F	b2	1	2	0	0
	b3	0	0	2	2
	b4	0	0	0	0

X1:Physics, X2:Math, X3:English, X4:Art 2:Excellent, 1:Fair, 0:Poor

$$\vec{a}_3 < \vec{b}_1$$

$$\vec{a}_3 < \vec{b}_2$$

$$\vec{a}_1 < \vec{b}_3$$

$$\vec{a}_2 < \vec{b}_3$$

Example: Consistent Pairs

		X1	X2	Х3	X4
	a1	0	0	2	1
Τ	a2	0	0	1	2
	a4	2	2	2	2
F	b1	2	1	0	0
	b2	1	2	0	0
	b4	0	0	0	0

X1:Physics, X2:Math, X3:English, X4:Art 2:Excellent, 1:Fair, 0:Poor

There is no pair (\vec{a}_i, \vec{b}_j) such that $\vec{a}_i < \vec{b}_j$.

$$f = X_3^{\{2\}} X_4^{\{1,2\}} \vee X_3^{\{1,2\}} X_4^{\{2\}}$$

Application 1: Mushrooms

Training Data

- # of instances: 5644
 - Poisonous:2156
 - Edible: 3488
- # of variables: 22
- The function is

$$f: P_1 \times P_2 \times \cdots \times P_{22} \longrightarrow B.$$

$$P_i = \{0, 1, ..., p_i - 1\}.$$
 $p_1 = 6, p_2 = 4, p_3 = 10, p_4 = 2,$
 $p_5 = 9, p_6 = 4, p_7 = 3, p_8 = 2,$
 $p_9 = 12, p_{10} = 2, p_{11} = 6, p_{12} = 4,$
 $p_{13} = 4, p_{14} = 4, p_{15} = 9, p_{16} = 2,$
 $p_{17} = 4, p_{18} = 3, p_{19} = 8, p_{20} = 9,$
 $p_{21} = 6, p_{22} = 7.$

Multi-Valued Approach

 Found a 3-variable solution to represent poisonous mushrooms.

$$X_5^{\{2,3,4,5,7\}} \vee X_{21}^{\{0,1,2,3,5\}} X_{22}^{\{1,5\}} \vee X_{21}^{\{1,4\}} X_{22}^{\{0,2,5\}}$$

- X₅: denotes odor (9-valued)
- X₂₁: denotes population (6-valued),
- X₂₂: denotes habitat (7-valued).

Two-Valued Approach

- Prof. Boros' group in Rutgers University converted 22 multi-valued variables into 125 two-valued variables.
- They found a solution with 6 two-valued variables to represent poisonous mushrooms.
- Our multi-valued approach required only 3 variables.

Application 2: Hepatitis

Data Set

- # of instances: 80
 - Died: 13
 - Survived: 67
- # of variables: 19
 - Two-valued:13
 - Real-valued: 6

Multi-Valued Approach

- Minimum support set: {X₁,X₁₅,X₁₇, X₁₈}
- X₁: Age (9-valued)
- X₁₅: Alkaline phosphatase (7-valued)
- X₁₇: Albumin (7-valued)
- X₁₈: Prothrombin time (10-valued)

Two-Valued Approach

- Prof. Boros' group of Rutgers University used 46 two-valued variables to represent the function.
- They found a solution with 7 two-valued variables.
- Our multi-valued approach required only 4 variables.

Two-Valued Approach

- X4: Antivirals
- X11: Spider Angioma (spider nevus)
- X13: Varices
- X15>120 :Alkaline phosphatase
- X15> 200
- X18>50 :Prothrombin time
- X19: Histology

Application 3: Breast Cancer (Monotone Increasing Function)

Fine Needle Aspiration (FNA)

Data Set

- # of instances: 683
 - Benign: 444
 - Malignant: 239
- # of variables: 9
 - Each variable takes 10 values P= {1,2,...,10}.
 - Larger value implies malignant tumor.
 - Smaller value implies benign tumor.
- Assume this represents a monotone increasing function.

Number of Conflicting Pairs

- 18 pairs among 444x 239=106116.
- Removed
 - 2 benign
 - 4 malignant
- Training set consists of
 - 442 benign
 - 235 malignant
- After simplification using monotone property:
 - 25 benign
 - 232 malignant.

Hasse Diagram of Monotone Increasing Function

Multi-Valued Approach

- Found a 7-variable solution:
 - $-\{X_1,X_4,X_5,X_6,X_7,X_8,X_9\}$

Two-Valued Approach

- Prof. Boros' group of Rutgers University represented a 10-valued variable by 9 twovalued variables.
- They used 9 x 9=81 two-valued variables to represent the function.
- They found a solution with 11 two-valued variables.
- Our multi-valued approach required only 7 variables.

Conclusion

- Showed a method to minimize support sets for multi-valued input decision functions.
- Showed a method to make a consistent training set by removing the minimum number of instances.
- Minimized the support sets for poisonous mushrooms; hepatitis; and breast cancer.
- Showed that the multi-valued approach is direct and efficient.

Comments

- Logic minimization is useful for data mining.
- Especially, for medical applications, doctors must explain the reason of their decision to patients and insurance companies.
- The rule must be simple, so that everybody can understand.

 Detail will be shown in ISMVL-2019 proceedings, May 21-23, Fredericton, Canada.