
SAT in Logic Synthesis
Mathias Soeken

Integrated Systems Laboratory, EPFL, Switzerland
R mathias.soeken@epfl.ch � msoeken.github.io � msoeken/cirkit



two

Background

SAT-based area recovery in structural technology mapping

Applying logic synthesis to speedup SAT

SAT-based exact synthesis: encodings, topology families, and parallelism



three

Background

SAT-based area recovery in structural technology mapping

Applying logic synthesis to speedup SAT

SAT-based exact synthesis: encodings, topology families, and parallelism



four

Decompose large functions using k-LUT mapping
prime6 = [(x6x5 . . . x1)2 is prime]

x1 x3x2 x5x4 x6

prime6

x1 x3x2 x5x4 x6x1 x3x2 x5x4 x6

prime6

x1 x3x2 x5x4 x6

prime6prime6

x1 x3x2 x5x4 x6

f1 f2 f3

f4 1. Represent function as simple logic network with
small gate primitives (here: And-inverter graph)

2. Cover network with subnetworks with limited
fanin size k (here k = 3 and k = 4)

3. Collapse covered subnetworks into lookup-table
nodes



four

Decompose large functions using k-LUT mapping

prime6 = [(x6x5 . . . x1)2 is prime]

x1 x3x2 x5x4 x6

prime6

x1 x3x2 x5x4 x6

x1 x3x2 x5x4 x6

prime6

x1 x3x2 x5x4 x6

prime6prime6

x1 x3x2 x5x4 x6

f1 f2 f3

f4

1. Represent function as simple logic network with
small gate primitives (here: And-inverter graph)

2. Cover network with subnetworks with limited
fanin size k (here k = 3 and k = 4)

3. Collapse covered subnetworks into lookup-table
nodes



four

Decompose large functions using k-LUT mapping

prime6 = [(x6x5 . . . x1)2 is prime]

x1 x3x2 x5x4 x6

prime6

x1 x3x2 x5x4 x6

x1 x3x2 x5x4 x6

prime6

x1 x3x2 x5x4 x6

prime6prime6

x1 x3x2 x5x4 x6

f1 f2 f3

f4

1. Represent function as simple logic network with
small gate primitives (here: And-inverter graph)

2. Cover network with subnetworks with limited
fanin size k (here k = 3 and k = 4)

3. Collapse covered subnetworks into lookup-table
nodes



four

Decompose large functions using k-LUT mapping

prime6 = [(x6x5 . . . x1)2 is prime]

x1 x3x2 x5x4 x6

prime6

x1 x3x2 x5x4 x6x1 x3x2 x5x4 x6

prime6

x1 x3x2 x5x4 x6

prime6

prime6

x1 x3x2 x5x4 x6

f1 f2 f3

f4

1. Represent function as simple logic network with
small gate primitives (here: And-inverter graph)

2. Cover network with subnetworks with limited
fanin size k (here k = 3 and k = 4)

3. Collapse covered subnetworks into lookup-table
nodes



four

Decompose large functions using k-LUT mapping

prime6 = [(x6x5 . . . x1)2 is prime]

x1 x3x2 x5x4 x6

prime6

x1 x3x2 x5x4 x6x1 x3x2 x5x4 x6

prime6

x1 x3x2 x5x4 x6

prime6

prime6

x1 x3x2 x5x4 x6

f1 f2 f3

f4 1. Represent function as simple logic network with
small gate primitives (here: And-inverter graph)

2. Cover network with subnetworks with limited
fanin size k (here k = 3 and k = 4)

3. Collapse covered subnetworks into lookup-table
nodes



five

Background

SAT-based area recovery in structural technology mapping

Applying logic synthesis to speedup SAT

SAT-based exact synthesis: encodings, topology families, and parallelism



six

SAT-based LUT mapping

I Input: Logic network, set of k-cuts for each gate

I Output: k-LUT mapping

I Solve problem “Does there exist a k-LUT mapping with L cuts?” as a SAT
problem.

I Solve problem starting from some satisfiable upper bound, and improve bound
until no more solution can be found

I Result guaranteed to be optimum for selected cuts

I How to encode the problem?
I How to make it reliably efficient for large networks?

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



six

SAT-based LUT mapping

I Input: Logic network, set of k-cuts for each gate
I Output: k-LUT mapping

I Solve problem “Does there exist a k-LUT mapping with L cuts?” as a SAT
problem.

I Solve problem starting from some satisfiable upper bound, and improve bound
until no more solution can be found

I Result guaranteed to be optimum for selected cuts

I How to encode the problem?
I How to make it reliably efficient for large networks?

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



six

SAT-based LUT mapping

I Input: Logic network, set of k-cuts for each gate
I Output: k-LUT mapping

I Solve problem “Does there exist a k-LUT mapping with L cuts?” as a SAT
problem.

I Solve problem starting from some satisfiable upper bound, and improve bound
until no more solution can be found

I Result guaranteed to be optimum for selected cuts

I How to encode the problem?
I How to make it reliably efficient for large networks?

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



six

SAT-based LUT mapping

I Input: Logic network, set of k-cuts for each gate
I Output: k-LUT mapping

I Solve problem “Does there exist a k-LUT mapping with L cuts?” as a SAT
problem.

I Solve problem starting from some satisfiable upper bound, and improve bound
until no more solution can be found

I Result guaranteed to be optimum for selected cuts

I How to encode the problem?
I How to make it reliably efficient for large networks?

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



six

SAT-based LUT mapping

I Input: Logic network, set of k-cuts for each gate
I Output: k-LUT mapping

I Solve problem “Does there exist a k-LUT mapping with L cuts?” as a SAT
problem.

I Solve problem starting from some satisfiable upper bound, and improve bound
until no more solution can be found

I Result guaranteed to be optimum for selected cuts

I How to encode the problem?
I How to make it reliably efficient for large networks?

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



six

SAT-based LUT mapping

I Input: Logic network, set of k-cuts for each gate
I Output: k-LUT mapping

I Solve problem “Does there exist a k-LUT mapping with L cuts?” as a SAT
problem.

I Solve problem starting from some satisfiable upper bound, and improve bound
until no more solution can be found

I Result guaranteed to be optimum for selected cuts

I How to encode the problem?

I How to make it reliably efficient for large networks?

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



six

SAT-based LUT mapping

I Input: Logic network, set of k-cuts for each gate
I Output: k-LUT mapping

I Solve problem “Does there exist a k-LUT mapping with L cuts?” as a SAT
problem.

I Solve problem starting from some satisfiable upper bound, and improve bound
until no more solution can be found

I Result guaranteed to be optimum for selected cuts

I How to encode the problem?
I How to make it reliably efficient for large networks?

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



seven

Encoding
Variables
I mi = [gate i is mapped]

for each gate i

I si,C = [cut C is selected for gate i]
for each cut C of gate i

Clauses
I (mo) for each gate o that drives an output
I mi →

∨
C∈CUTS(i)

si,C for each gate i

I si,C →
∧
j∈C

mj for each cut C of gate i

I
∑

mi 6 L

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



seven

Encoding
Variables
I mi = [gate i is mapped]

for each gate i

I si,C = [cut C is selected for gate i]
for each cut C of gate i

Clauses
I (mo) for each gate o that drives an output
I mi →

∨
C∈CUTS(i)

si,C for each gate i

I si,C →
∧
j∈C

mj for each cut C of gate i

I
∑

mi 6 L

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



seven

Encoding
Variables
I mi = [gate i is mapped]

for each gate i

I si,C = [cut C is selected for gate i]
for each cut C of gate i

Clauses
I (mo) for each gate o that drives an output

I mi →
∨

C∈CUTS(i)
si,C for each gate i

I si,C →
∧
j∈C

mj for each cut C of gate i

I
∑

mi 6 L

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



seven

Encoding
Variables
I mi = [gate i is mapped]

for each gate i

I si,C = [cut C is selected for gate i]
for each cut C of gate i

Clauses
I (mo) for each gate o that drives an output
I mi →

∨
C∈CUTS(i)

si,C for each gate i

I si,C →
∧
j∈C

mj for each cut C of gate i

I
∑

mi 6 L

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



seven

Encoding
Variables
I mi = [gate i is mapped]

for each gate i

I si,C = [cut C is selected for gate i]
for each cut C of gate i

Clauses
I (mo) for each gate o that drives an output
I mi →

∨
C∈CUTS(i)

si,C for each gate i

I si,C →
∧
j∈C

mj for each cut C of gate i

I
∑

mi 6 L

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



seven

Encoding
Variables
I mi = [gate i is mapped]

for each gate i

I si,C = [cut C is selected for gate i]
for each cut C of gate i

Clauses
I (mo) for each gate o that drives an output
I mi →

∨
C∈CUTS(i)

si,C for each gate i

I si,C →
∧
j∈C

mj for each cut C of gate i

I
∑

mi 6 L

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



eight

Windowing

I Runtime degrades quickly as networks become larger

I Restrict network size using windowing (to, e.g., 128 gates)
I Windowing is applied to mapped network, not cutting through mapped cuts
I Find good pivots to extract windows
I Cache windows to avoid duplicate optimization effort

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



eight

Windowing

I Runtime degrades quickly as networks become larger
I Restrict network size using windowing (to, e.g., 128 gates)

I Windowing is applied to mapped network, not cutting through mapped cuts
I Find good pivots to extract windows
I Cache windows to avoid duplicate optimization effort

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



eight

Windowing

I Runtime degrades quickly as networks become larger
I Restrict network size using windowing (to, e.g., 128 gates)
I Windowing is applied to mapped network, not cutting through mapped cuts

I Find good pivots to extract windows
I Cache windows to avoid duplicate optimization effort

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



eight

Windowing

I Runtime degrades quickly as networks become larger
I Restrict network size using windowing (to, e.g., 128 gates)
I Windowing is applied to mapped network, not cutting through mapped cuts
I Find good pivots to extract windows

I Cache windows to avoid duplicate optimization effort

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



eight

Windowing

I Runtime degrades quickly as networks become larger
I Restrict network size using windowing (to, e.g., 128 gates)
I Windowing is applied to mapped network, not cutting through mapped cuts
I Find good pivots to extract windows
I Cache windows to avoid duplicate optimization effort

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



nine

Implementation
ABC
I Command &satlut

I Input must be 6-LUT mapped AIG

mockturtle
I C++ function satlut_mapping<Ntk>
I Works on arbitrary logic networks
I Works on arbitrary cut sizes
I Not fully finished (PR #122)

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



nine

Implementation
ABC
I Command &satlut
I Input must be 6-LUT mapped AIG

mockturtle
I C++ function satlut_mapping<Ntk>
I Works on arbitrary logic networks
I Works on arbitrary cut sizes
I Not fully finished (PR #122)

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



nine

Implementation
ABC
I Command &satlut
I Input must be 6-LUT mapped AIG

mockturtle
I C++ function satlut_mapping<Ntk>

I Works on arbitrary logic networks
I Works on arbitrary cut sizes
I Not fully finished (PR #122)

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



nine

Implementation
ABC
I Command &satlut
I Input must be 6-LUT mapped AIG

mockturtle
I C++ function satlut_mapping<Ntk>
I Works on arbitrary logic networks

I Works on arbitrary cut sizes
I Not fully finished (PR #122)

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



nine

Implementation
ABC
I Command &satlut
I Input must be 6-LUT mapped AIG

mockturtle
I C++ function satlut_mapping<Ntk>
I Works on arbitrary logic networks
I Works on arbitrary cut sizes

I Not fully finished (PR #122)

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



nine

Implementation
ABC
I Command &satlut
I Input must be 6-LUT mapped AIG

mockturtle
I C++ function satlut_mapping<Ntk>
I Works on arbitrary logic networks
I Works on arbitrary cut sizes
I Not fully finished (PR #122)

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]



ten

Background

SAT-based area recovery in structural technology mapping

Applying logic synthesis to speedup SAT

SAT-based exact synthesis: encodings, topology families, and parallelism



eleven

CNF generation for logic networks

I SAT-based verification and synthesis tasks require logic network to be represented
as CNF
e.g., equivalence checking, model checking, Boolean resubstitution

I Traditional approach is to use Tseytin’s encoding
I Each gate is assigned an auxiliary variable
I Gate function is transformed into CNF
I Example c = a∧ b:

(a∨ c̄)(b∨ c̄)(ā∨ b̄∨ c)

I Advantage: Resulting CNF is linear in the number of gates
I Disadvantage: Requires the use of many auxiliary variables

[N. Eén, A. Mishchenko, and N. Sörensson, SAT 10 (2007), 272–286]



eleven

CNF generation for logic networks

I SAT-based verification and synthesis tasks require logic network to be represented
as CNF
e.g., equivalence checking, model checking, Boolean resubstitution

I Traditional approach is to use Tseytin’s encoding

I Each gate is assigned an auxiliary variable
I Gate function is transformed into CNF
I Example c = a∧ b:

(a∨ c̄)(b∨ c̄)(ā∨ b̄∨ c)

I Advantage: Resulting CNF is linear in the number of gates
I Disadvantage: Requires the use of many auxiliary variables

[N. Eén, A. Mishchenko, and N. Sörensson, SAT 10 (2007), 272–286]



eleven

CNF generation for logic networks

I SAT-based verification and synthesis tasks require logic network to be represented
as CNF
e.g., equivalence checking, model checking, Boolean resubstitution

I Traditional approach is to use Tseytin’s encoding
I Each gate is assigned an auxiliary variable

I Gate function is transformed into CNF
I Example c = a∧ b:

(a∨ c̄)(b∨ c̄)(ā∨ b̄∨ c)

I Advantage: Resulting CNF is linear in the number of gates
I Disadvantage: Requires the use of many auxiliary variables

[N. Eén, A. Mishchenko, and N. Sörensson, SAT 10 (2007), 272–286]



eleven

CNF generation for logic networks

I SAT-based verification and synthesis tasks require logic network to be represented
as CNF
e.g., equivalence checking, model checking, Boolean resubstitution

I Traditional approach is to use Tseytin’s encoding
I Each gate is assigned an auxiliary variable
I Gate function is transformed into CNF

I Example c = a∧ b:
(a∨ c̄)(b∨ c̄)(ā∨ b̄∨ c)

I Advantage: Resulting CNF is linear in the number of gates
I Disadvantage: Requires the use of many auxiliary variables

[N. Eén, A. Mishchenko, and N. Sörensson, SAT 10 (2007), 272–286]



eleven

CNF generation for logic networks

I SAT-based verification and synthesis tasks require logic network to be represented
as CNF
e.g., equivalence checking, model checking, Boolean resubstitution

I Traditional approach is to use Tseytin’s encoding
I Each gate is assigned an auxiliary variable
I Gate function is transformed into CNF
I Example c = a∧ b:

(a∨ c̄)(b∨ c̄)(ā∨ b̄∨ c)

I Advantage: Resulting CNF is linear in the number of gates
I Disadvantage: Requires the use of many auxiliary variables

[N. Eén, A. Mishchenko, and N. Sörensson, SAT 10 (2007), 272–286]



eleven

CNF generation for logic networks

I SAT-based verification and synthesis tasks require logic network to be represented
as CNF
e.g., equivalence checking, model checking, Boolean resubstitution

I Traditional approach is to use Tseytin’s encoding
I Each gate is assigned an auxiliary variable
I Gate function is transformed into CNF
I Example c = a∧ b:

(a∨ c̄)(b∨ c̄)(ā∨ b̄∨ c)

I Advantage: Resulting CNF is linear in the number of gates

I Disadvantage: Requires the use of many auxiliary variables

[N. Eén, A. Mishchenko, and N. Sörensson, SAT 10 (2007), 272–286]



eleven

CNF generation for logic networks

I SAT-based verification and synthesis tasks require logic network to be represented
as CNF
e.g., equivalence checking, model checking, Boolean resubstitution

I Traditional approach is to use Tseytin’s encoding
I Each gate is assigned an auxiliary variable
I Gate function is transformed into CNF
I Example c = a∧ b:

(a∨ c̄)(b∨ c̄)(ā∨ b̄∨ c)

I Advantage: Resulting CNF is linear in the number of gates
I Disadvantage: Requires the use of many auxiliary variables

[N. Eén, A. Mishchenko, and N. Sörensson, SAT 10 (2007), 272–286]



twelve

LUT-based CNF generation

I Perform LUT mapping to control tradeoff between number of auxiliary variables
and number of clauses

I Idea: perform Tseytin encoding on LUTs, not on gates
I Advantage: Number of auxiliary variables corresponds to number of mapped gates
I Cost function based on CNF size
I May even lead to fewer number of overall clauses

[N. Eén, A. Mishchenko, and N. Sörensson, SAT 10 (2007), 272–286]



twelve

LUT-based CNF generation

I Perform LUT mapping to control tradeoff between number of auxiliary variables
and number of clauses

I Idea: perform Tseytin encoding on LUTs, not on gates

I Advantage: Number of auxiliary variables corresponds to number of mapped gates
I Cost function based on CNF size
I May even lead to fewer number of overall clauses

[N. Eén, A. Mishchenko, and N. Sörensson, SAT 10 (2007), 272–286]



twelve

LUT-based CNF generation

I Perform LUT mapping to control tradeoff between number of auxiliary variables
and number of clauses

I Idea: perform Tseytin encoding on LUTs, not on gates
I Advantage: Number of auxiliary variables corresponds to number of mapped gates

I Cost function based on CNF size
I May even lead to fewer number of overall clauses

[N. Eén, A. Mishchenko, and N. Sörensson, SAT 10 (2007), 272–286]



twelve

LUT-based CNF generation

I Perform LUT mapping to control tradeoff between number of auxiliary variables
and number of clauses

I Idea: perform Tseytin encoding on LUTs, not on gates
I Advantage: Number of auxiliary variables corresponds to number of mapped gates
I Cost function based on CNF size

I May even lead to fewer number of overall clauses

[N. Eén, A. Mishchenko, and N. Sörensson, SAT 10 (2007), 272–286]



twelve

LUT-based CNF generation

I Perform LUT mapping to control tradeoff between number of auxiliary variables
and number of clauses

I Idea: perform Tseytin encoding on LUTs, not on gates
I Advantage: Number of auxiliary variables corresponds to number of mapped gates
I Cost function based on CNF size
I May even lead to fewer number of overall clauses

[N. Eén, A. Mishchenko, and N. Sörensson, SAT 10 (2007), 272–286]



thirteen

Background

SAT-based area recovery in structural technology mapping

Applying logic synthesis to speedup SAT

SAT-based exact synthesis: encodings, topology families, and parallelism

[W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, SAT-Based Exact Synthesis: Encodings, Topology Families, and Parallelism TCAD,
to appear]



SAT in Logic Synthesis
Mathias Soeken

Integrated Systems Laboratory, EPFL, Switzerland
R mathias.soeken@epfl.ch � msoeken.github.io � msoeken/cirkit


	Background
	SAT-based area recovery in structural technology mapping
	Applying logic synthesis to speedup SAT
	SAT-based exact synthesis: encodings, topology families, and parallelism

