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Decompose large functions using k-LUT mapping
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f4 1. Represent function as simple logic network with
small gate primitives (here: And-inverter graph)

2. Cover network with subnetworks with limited
fanin size k (here k = 3 and k = 4)

3. Collapse covered subnetworks into lookup-table
nodes
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SAT-based LUT mapping

I Input: Logic network, set of k-cuts for each gate

I Output: k-LUT mapping

I Solve problem “Does there exist a k-LUT mapping with L cuts?” as a SAT
problem.

I Solve problem starting from some satisfiable upper bound, and improve bound
until no more solution can be found

I Result guaranteed to be optimum for selected cuts

I How to encode the problem?
I How to make it reliably efficient for large networks?

[B. Schmitt, A. Mishchenko, and R.K. Brayton, ASP-DAC 23 (2018), 586–591]
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Encoding
Variables
I mi = [gate i is mapped]

for each gate i

I si,C = [cut C is selected for gate i]
for each cut C of gate i

Clauses
I (mo) for each gate o that drives an output
I mi →

∨
C∈CUTS(i)

si,C for each gate i

I si,C →
∧
j∈C

mj for each cut C of gate i

I
∑

mi 6 L
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Windowing

I Runtime degrades quickly as networks become larger

I Restrict network size using windowing (to, e.g., 128 gates)
I Windowing is applied to mapped network, not cutting through mapped cuts
I Find good pivots to extract windows
I Cache windows to avoid duplicate optimization effort
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Implementation
ABC
I Command &satlut

I Input must be 6-LUT mapped AIG

mockturtle
I C++ function satlut_mapping<Ntk>
I Works on arbitrary logic networks
I Works on arbitrary cut sizes
I Not fully finished (PR #122)
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CNF generation for logic networks

I SAT-based verification and synthesis tasks require logic network to be represented
as CNF
e.g., equivalence checking, model checking, Boolean resubstitution

I Traditional approach is to use Tseytin’s encoding
I Each gate is assigned an auxiliary variable
I Gate function is transformed into CNF
I Example c = a∧ b:

(a∨ c̄)(b∨ c̄)(ā∨ b̄∨ c)

I Advantage: Resulting CNF is linear in the number of gates
I Disadvantage: Requires the use of many auxiliary variables

[N. Eén, A. Mishchenko, and N. Sörensson, SAT 10 (2007), 272–286]
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LUT-based CNF generation

I Perform LUT mapping to control tradeoff between number of auxiliary variables
and number of clauses

I Idea: perform Tseytin encoding on LUTs, not on gates
I Advantage: Number of auxiliary variables corresponds to number of mapped gates
I Cost function based on CNF size
I May even lead to fewer number of overall clauses

[N. Eén, A. Mishchenko, and N. Sörensson, SAT 10 (2007), 272–286]
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