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Approximate Computing: Motivation
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Exact Results NOT Necessary

• A few erroneous pixels do not affect human 

recognizing the image.
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Numerical Values NOT Matter

• Handwritten Digit Recognition
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NO Golden Standard Answer
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Approximate Computing

• Design a circuit that may not be 100% correct

– Targeting at error-tolerant applications

– Trade accuracy for area/delay/power
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Approximate Computing

• Design a circuit that may not be 100% correct

– Targeting at error-tolerant applications

– Trade accuracy for area/delay/power
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Approximate Logic Synthesis

10

Approximate

logic 

synthesis

Original 

Design

Approximate

Design
Error

Specification

(E.g., error rate < 1%)

00 01 11 10

00 000 000 000 000

01 000 001 011 010

11 000 011 110

10 000 010 110 100

1001

B1B0

A1A0

What’s the 

optimal way to 

introduce error?



Existing Works on ALS

• Inject stuck-at-faults [Shin and Gupta, DATE ’11]

• SALSA: Encode the error constraint as a function and use exploit 

don’t cares [Venkataramani et al., DAC’12]

• SASIMI: Identify similar signal pairs and substitute one signal by the 

other in the pair [Venkataramani et al., DATE’13]

• Multi-level logic synthesis under general error constraint [Miao et al., 

ICCAD’14]

• Approximate AIG Rewriting [Chandrasekharan et al., ICCAD’16]

• SCALS: Statistically certified approach with stochastic optimization 

[Liu and Zhang, ICCAD’17]

• BLASYS: Boolean matrix factorization [Hashemi, Tann, and Reda, DAC’18]

• Approximate logic synthesis by symmetrization [Bernasconi, Ciriani, and 

Villa, DATE’19]

• …
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Our Work on Approximate Logic Synthesis
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Background: Boolean Logic 

Network Model
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𝑦 = 𝑥 + 𝑐

𝑥 = 𝑎𝑏
𝑎

𝑏

𝑐
𝑦

𝑥

Primary

Inputs

Primary
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Internal

Nodes

• A direct acyclic graph. Each node is a Boolean function

• Boolean function could be in either sum-of-product 

(SOP) form or factored form

• Quality metric: literal count

Literal count = 4



Approximating by Local Change
• Work on factored-form expression of a node

• Simplify it by removing some literals

• An approximation; can cause error

• Call the result approximate simplified expression (ASE)
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𝑛 = (𝑎 + 𝑏)(𝑐 + 𝑑)

remove 1 literal

𝑛 = 𝑏(𝑐 + 𝑑) 𝑛 = 𝑎(𝑐 + 𝑑) 𝑛 = 𝑎 + 𝑏 𝑑 𝑛 = 𝑎 + 𝑏 𝑐

Each node has 

multiple ASEs



Single-Selection Algorithm

• Each round select one node for shrinking

– Check all nodes; for each node, check all ASEs 

– Pick a node 𝑛 and an associated ASE of 𝑛 with the 

largest score

– Score = #saved_literal / error_rate

• However, it is slow ...

– Accelerate it by selecting multiple nodes for 

simultaneous change in each round
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Optimal Choice of Multiple Changes

• Questions:

1. Which set of nodes should we choose to make 

change?

2. For these chosen nodes, which of their ASEs should 

we pick?

• Proposed solution: model this as a 0/1 multi-state 

knapsack problem
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0/1 Multi-state Knapsack Problem

• 𝑛 items. Each item 𝑐𝑖 has 𝑚𝑖 states 

𝑤𝑖1, 𝑣𝑖1 , 𝑤𝑖2, 𝑣𝑖2 … 𝑤𝑖𝑚𝑖
, 𝑣𝑖𝑚𝑖

– 𝑤𝑖𝑗 &𝑣𝑖𝑗: weight and value of  the state 𝑗 of item 𝑖

• Choose a set of items and their associated states to put 

into a knapsack with capacity 𝑊 to maximize the total 

value
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capacity = 9



Mapping to Multi-state Knapsack 

Problem
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node  item

Error rate 

weight

# of saved 

literals  value

ASE  state

Error rate margin 

 knapsack 

capacity

ASE  state

ASE  state

Can be solved by extending the classical dynamic 

programming solution to basic 0/1 knapsack problem



Experimental Results: Area Saving

20



Comparison to Previous Method
• SASIMI [Venkataramani+, DATE’13] is a state-of-the-art method

• Average over 7 error rate thresholds: 0.1%, 0.3%, 0.5%, 

0.8%, 1%, 3%, 5%
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Area-Driven ALS Not Good in 

Reducing Delay
• Applying approximate local changes (ALCs) on non-

critical gates

• Applying ALC on a single critical gate is not effective, 

since there exist multiple critical paths
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DALS: Delay-driven ALS

• Basic idea

– Work on AND-inverter graph (AIG)

– Apply depth-reduction approximate local changes
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Global Depth Reduction

• Approximate local change 

on a single critical gate is 

not effective in reducing 

global delay

• Solution:

– All the critical paths 

should be shortened 

simultaneously

– Need to find critical cut

on the critical graph
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Overall Flow
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Obtain critical graph

Find a critical cut and 

a set of ALCs with 

minimum error impact

Apply the best choice (cut + ALCs) 

to get new approximate circuit

Until error bound

is reached

?



Decompose Error Impact
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Advantages of Error Impact 

Decomposition

1. Reduce the number of logic simulations (= total number 

of ALCs over all nodes)

2. Only need to keep the ALC with the min error impact 

for each node
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Critical Graph with Min Error Impacts
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• The problem reduces to 

finding a min cut

• Min-cut = Max-flow

• Can be solved by a network 

flow algorithm

min error impact over all 
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Experimental Results

• Compared to [Su+, DAC’18] post-processed by 

delay-driven traditional logic synthesis
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Conclusion
• Approximate computing

– Targeting at error-tolerant application

– Trading accuracy for area/delay/power

• Effective approximate logic synthesis tool

– Area-driven: formulated as a knapsack problem

– Delay-driven: formulated as a network flow problem
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Thank You!

Questions?


