R JOINT INSTITUTE

Approximate Logic Synthesis for

Area and Delay Optimization

Weikang Qian, Ph.D.
Associate Professor
University of Michigan-SJTU Joint Institute
Shanghai Jiao Tong University

DATE’19 Friday Workshop: Quo Vadis, Logic Synthesis?
Florence, Italy, Mar. 29, 2019

Outline

Background on Approximate Computing
Area-driven Approximate Logic Synthesis
Delay-driven Approximate Logic Synthesis

Conclusion

Approximate Computing: Motivation

9RITII0 : CO0ITBAT CABS0NSSY MMM ST
SH07 912 730 BI0IUBIT escacerns]
WsaTEI6 LM

Error-toleran
applications

Low-power
VLSI

Exact Results NOT Necessary

* Afew erroneous pixels do not affect human
recognizing the image.

Accurate Inexact
Result Result

[Han and Orshansky, 2013]

Numerical Values NOT Matter

« Handwritten Digit Recognition

Similarity (probability)
0.9331 v

g / 8 89257 | so20

0O 0.1563

? 1 0.0984

O 0.2435

NO Golden Standard Answer

Google

c++ programming tutorial _!,, Q.
258] BR HiE] R4 B= =E IE

HeF29 1,490,000 =57 (AT 033 %)

C++ Language - C++ Tutorials - Cplusplus.com
www_cplusplus.com/doc/tutorial/ ~ EHFEIE
Complete tutorial from cplusplus.com that covers from basics up to object criented programming.

Structure of a program - Compilers - Classes - Variables and types

C++ Tutorial
hitp-//www tutorialspoint.com/cplusplus/ = &Fttm
C++ is a middle-level programming language developed by Bjame Stroustrup starting in 19759 at Bell

Labs. C++ runs on a varnety of platforms, such as Windows, ...
C++ Overview - C++ Tutonal in PDF - C++ Classes and Objects - C++ Basic Syntax

C++ Programming Tutorial for Eeginners in English - Part 1 - YouTube

. http://gg.zzyjxs.com/watch?v=53t-5UtvDNO ~
. 20135F8H3H - 155 : Programming Tutorials
§ = C++ Programming Tutonal for Beginners in English - Part 1. Topics covered in

this tutorial are: - Creating first ...

Approximate Computing

« Design a circuit that may not be 100% correct
— Targeting at error-tolerant applications
— Trade accuracy for area/delay/power

B1BO

A1AO

00

01

11

10

00

000

000

000

000

01

000

001

011

010

11

000

011C

—
1001

e

10

10

000

010

110

100

K-Map for 2-bit multiplier

[Kulkarni et al. 2011]

b1

at

0=

1=

1"

a0

50—

Y

-

a0™

J U
v

Digital circuit

Approximate Computing

« Design a circuit that may not be 100% correct
— Targeting at error-tolerant applications
— Trade accuracy for area/delay/power

al—

B1BO [Kulkarni et al. 2011]
A1AO) -
00 | 01| 11 | 10 o
00 [000 | 000 | 000 |000
01 | 000001 011 |010 =Dy
11 {000 | 011 | 111 |110 1)~
bo— O\ =
10 | 000 | 010 | 110 | 100 , .

(@)

K-Map for 2-bit multiplier Digital circuit

Approximate Computing

« Design a circuit that may not be 100% correct
— Targeting at error-tolerant applications
— Trade accuracy for area/delay/power

) D 2 [-
")) > -
i g = »
:;:___D_i> outt :(;-
[, il ——
Accurate Approximate
2-bit multiplier 2-bit multiplier

[Kulkarni et al., 2011]

Approximate Logic Synthesis

B1BO

A1AOQO 00 | 01 | 11

10

00 | 000 | 000 | 000

000

01 | 000|001 | 011

010

11 {000 | 011 | 1001

110

10 | 000 | 010 | 110

100

Original

—)

What's the
optimal way to
Introduce error?

Design _
Approximate
logic
Error synthesis
Specification my >

(E.g., error rate < 1%)

Approximate

10

Existing Works on ALS

Inject stuck-at-faults [Shin and Gupta, DATE "11]

SALSA: Encode the error constraint as a function and use exploit
don’t cares [Venkataramani et al., DAC'12]

SASIMI: Identify similar signal pairs and substitute one signal by the
other in the pair [Venkataramani et al., DATE’13]

Multi-level logic synthesis under general error constraint [Miao et al.,
ICCAD’14]

Approximate AIG Rewriting [Chandrasekharan et al., ICCAD’16]

SCALS: Statistically certified approach with stochastic optimization
[Liu and Zhang, ICCAD’17]

BLASYS: Boolean matrix factorization [Hashemi, Tann, and Reda, DAC’18]

Approximate logic synthesis by symmetrization [Bernasconi, Ciriani, and
Villa, DATE'19]

11

Our Work on Approximate Logic Synthesis

Approximate logic synthesis

—

Two-level (TCAD’19)

Multi-level

/\

FPGA (ASPDAC’17)

ASIC

Delay
Area (ICCAD'18)

Boolean network || Bi-decomposition
(DAC’16) (ICCD’17)

Error analysis
(DAC’18)

12

Outline

* Area-driven Approximate Logic Synthesis
— Y. Wu and W. Qian, Design Automation Conference (DAC), 2016

* Delay-driven Approximate Logic Synthesis

— Z.Zhou, Y. Yao, S. Huang, S. Su, C. Meng, and W. Qian,
International Conference on Computer-Aided Design (ICCAD),
2018

13

Background: Boolean Logic
Network Model

« Adirect acyclic graph. Each node Is a Boolean function

« Boolean function could be in either sum-of-product
(SOP) form or factored form

e Quality metric: literal count

Literal count = 4

Primary Internal Primary
Inputs Nodes Outputs

14

Approximating by Local Change

« Work on factored-form expression of a node
« Simplify it by removing some literals
« An approximation; can cause error
« Call the result approximate simplified expression (ASE)

C)Y—=>G=(a+b)(c+d) Each node has

multiple ASEs
C/r‘ remove 1 literal

Single-Selection Algorithm

« Each round select one node for shrinking
— Check all nodes: for each node, check all ASEs

— Pick a node n and an associated ASE of n with the
largest score

— Score = #saved_literal / error_rate

e However, it is slow ...

— Accelerate it by selecting multiple nodes for
simultaneous change in each round

16

Optimal Choice of Multiple Changes

e Questions:

1. Which set of nodes should we choose to make
change?

2. For these chosen nodes, which of their ASEs should
we pick?

* Proposed solution: model this as a 0/1 multi-state
knapsack problem

17

0/1 Multi-state Knapsack Problem

« n items. Each item ¢; has m; states
(Wi, Vi1), Win, vi2) ... (Wiml-» vimi)
— w;; &v;;: weight and value of the state j of item i

* Choose a set of items and their associated states to put

Into a knapsack with capacity W to maximize the total
value

capacity = 9

m ? item state welght | value
" <l : D)

oe, O ——
o O]
)) = :

c3 $31 2 |
tpd 18

Mapping to Multi-state Knapsack
Problem

/ ASE & state
node < item =dll ASE < state

_ \) Error rate <
Error rate margin weight
< knapsack ASE & state <
\.

of saved
literals <& value

capacity

Can be solved by extending the classical dynamic
programming solution to basic 0/1 knapsack problem

19

Experimental Results: Area Saving

area saving(%)

80

|
=
T

o0
=

..

...

o
=

error rate(%)

=4 c880
= c1908

-~ | == c2670

c3540
== c5315

c7552
—— alud
== RCA32
el CLA32
== KSA32

MULS
== \WTM8

20

Comparison to Previous Method

« SASIMI [Venkataramani+, DATE'13] Is a state-of-the-art method
* Average over 7 error rate thresholds: 0.1%, 0.3%, 0.5%,

0.8%, 1%, 3%, 5%

SASIMI multi-selection
circuit area ratio | time/s area ratio time/s
¢880 0.896 154 0.893 48
c1908 0.610 1090 0.598 181
c2670 0.724 664 0.673 90
c3540 0.975 393 0.965 77
cd315 0.981 996 0.981 85
c7552 0.948 2665 0.941 173
alu4 0.892 645 0.869 186
RCA32 0.972 33 0.969 15
CLA32 0.829 196 0.822 57
KSA32 0.830 553 0.831 39
MULS 0.829 1095 0.826 151
WTMS 0.959 249 0.956
Geomean 0.863 452

Area saving:
Slightly better

Acceleration:
5.9X

21

Outline

* Delay-driven Approximate Logic Synthesis

22

Area-Driven ALS Not Good In

Reducing Delay

Applying approximate local changes (ALCs) on non-

critical gates

Applying ALC on a single critical gate is not effective,
since there exist multiple critical paths

— — —

|
|
|
|
|
|
|
|
|
Pls
|
|
|
|
|
|
|
|
|

=1

|
|
|
|
|
|
|
|
|
l 3
|
|
|
|
|
|
|
|
|

DALS: Delay-driven ALS

» Basic idea
— Work on AND-inverter graph (AIG)
— Apply depth-reduction approximate local changes

Constant Replacement

SR

24

Global Depth Reduction

« Approximate local change
on a single critical gate is
not effective in reducing

global delay
« Solution:

— All the critical paths
should be shortened
simultaneously

— Need to find critical cut
on the critical graph

25

Overall Flow

Find a critical cut and
a set of ALCs with
minimum error impact

Obtain critical graph

Until error bound
IS reached

Apply the best choice (cut + ALCS)
to get new approximate circuit

26

Decompose Error Impact

_1
2
3
4
9

5
Error(ALCi=8, ALCj>9) =~ Error(ALCi—>8) + Error(ALCj—>9)

Suitable for error rate (ER) and mean error distance (MED)

27

Advantages of Error Impact
Decomposition

Reduce the number of logic simulations (= total number
of ALCs over all nodes)

Only need to keep the ALC with the min error impact
for each node 0.11

007 46
TLALC1 A

w

Pls 28

Critical Graph with Min Error Impacts

min error impact over all
ALCs for that node

l 0.03 0.12

51 oo (O (0
AR

0.18 0.13

The problem reduces to
finding a min cut

¢ Min-cut = Max-flow

e Can be solved by a network
flow algorithm

29

Experimental Results

« Compared to [Su+, DAC’18] post-processed by

delay-driven traditional logic synthesis

DALS [Su+, DAC'18]
Circuit | Error rate | AArea’ [|[ADelay’||| AArea | ADelay
(C880 10.73% 17.90% || 33.33% ||| 24.04% || 16.67%
C1355 12.48% 05.83% || 93.83% ||| 41.68% | 2.53%
C1908 3.78% 38.24% || 55.60% ||| 38.63% || 45.14%
(C3540 14.31% 19.80% || 16.37% ||| 35.67% | 8.33%
C5315 15.98% 3.01% 19.92% ||| 13.10% | 0.90%
C7552 6.38% 4.43% 16.90% ||| 21.79% | 0.91%
ALU4 9.45% 33.86% || 19.23% ||| 68.67% | 7.69%

30

Outline

Background on Approximate Computing
Area-driven Approximate Logic Synthesis
Delay-driven Approximate Logic Synthesis

Conclusion

31

Conclusion

« Approximate computing
— Targeting at error-tolerant application
— Trading accuracy for area/delay/power
« Effective approximate logic synthesis tool
— Area-driven: formulated as a knapsack problem
— Delay-driven: formulated as a network flow problem

Original
Design

Error
Specification ‘

(E.g., error rate < 1%)

Approximate
logic
synthesis

Approximate
Design

32

Acknowledgment

» Faculty: Prof. Jie Han, University of Alberta

« Students: Shuyang Huang, Chang Meng, Chuyu
Shen, Sanbao Su, Chen Wang, Yi Wu, Yue Yao,

Zhuangzhuang Zhou, Chen Zou

NSFC

* Funding agency: National Natural
Science Foundation of China (NSFC)

33

Iw.
VI
4
-
©
L
—

Questions?

