
Hardware Equivalence and Property Verification

Invited chapter for “Boolean Methods and Models
in Mathematics, Computer Science and Engineering”, pp. 599-674,

Yves Crama and Peter L. Hammer (eds.)
Encyclopedia of Mathematics and its Applications 134,

Cambridge University Press, 2010

Jie-Hong Roland Jiang⋆ and Tiziano Villa⋆⋆

1 Introduction to Formal Verification

1.1 The Problem of Verification

Synthesis and verification are two basic steps in designing a digital electronic sys-
tem, which may involve both hardware and software components. Synthesis aims
to produce an implementation that satisfies the specification while minimizing
some cost objectives, such as circuit area, code size, timing, power consumption,
etc. Verification deals with the certification that the synthesized component is
correct.

In system design, hardware synthesis and verification are more developed
than the software counterparts, and will be our focus. The reason of this asym-
metric development is three-fold: First, hardware design automation is better
driven by industrial needs; after all, hardware costs are more tangible. Second,
the correctness and time-to-market criteria of hardware design are in general
more stringent. As a result, hardware design requires rigorous design method-
ology and high automation. Third, hardware synthesis and verification admit
simpler formulation and are better studied.

There are various types of hardware verification, according to design stages,
methodologies, and objectives. By design stages, verification can be deployed in
high-level design from specification, called design verification, during synthesis
transformation, called implementation verification, or after circuit manufactur-
ing, called manufacture verification.

Manufacture verification is also known as testing. There is a whole research
and engineering community devoted to it. In hardware testing, we would like to
know if some defects appear in a manufactured circuit by testing the conformance
between it and its intended design. In this case, the circuit — usually a sequential
circuit, modeled abstractly as a finite-state machine (FSM) — is treated as a
black box. The temporal behavior of the FSM can only be observed through

⋆ Dept. of Electrical Engineering/Graduate Institute of Electronics Engineering, Na-
tional Taiwan University, Taipei 10617, Taiwan. Email:jhjiang@cc.ee.ntu.edu.tw.

⋆⋆ Dipartimento d’Informatica, Universita’ di Verona, Strada Le Grazie, 15, 37134
Verona, Italy. Email: tiziano.villa@univr.it.

2

output responses to input stimuli. In contrast, in design and implementation
verification, a state transition system is seen as a white box. Its transition relation
is known beforehand, and thus not only the output sequences but also the state
traces are known for given input sequences.

By methodologies, verification can be informal or formal. Informal verifi-
cation shows the presence, but not the absence, of design errors; formal veri-
fication shows both the presence and absence. Verifying the correctness of the
design itself can be performed in different contexts. A common design prac-
tice at different stages is simulation, i.e., stimulating the circuit with input se-
quences to check if the actual output sequences correspond to the expected ones
[Gos93,Pil98,ZKP00,Mic03,Lam05] The confidence of the outcome depends on
the view of the circuit (e.g., digital blocks, logic gates, or transistors) and the
size of the simulated input space. For instance, it is reasonable to simulate an
electronic circuit using a numerical simulator like SPICE, to characterize the
behavior of a circuit at the transistor level corresponding to a few logic gates.
For register-transfer level (RTL) and gate-level circuits, there are logic simula-
tors, but it is usually impossible to exercise the complete input space. Therefore
simulation is commonly conceived as an informal approach to verification.

Since the 1980s, theoretical and practical breakthroughs made possible formal
verification, the automatic process of checking formally whether a design satisfies
some requirements. ”Formally” means that we establish that the circuit satisfies
the requirements by a mathematical analysis of the system, exploring the full
set of behaviors, which is equivalent to an exhaustive simulation. A variety of
formalisms has been introduced and studied to support a rigorous analysis, and
they are based on automata and logical calculus. Automata may be regular or
ω-regular, according to whether we care about computed sequences of finite or
infinite lengths.

A very important class of formal methods goes under the name of model
checking [CGP99], where a finite-state system is represented by a labeled state
transition graph, the so-called Kripke structure, where labels of a state are the
values of atomic propositions in that state (for example the values of the regis-
ters). Properties about the system are expressed as formulae in temporal logic, of
which the state transition system is to be a “model”. So model checking consists
of traversing the graph of the transition system and of verifying that it satisfies
the formula representing the property, i.e., the system is a model of the prop-
erty. We do not discuss here infinite-state systems (software programs); there
are however vibrant research efforts about verification of such systems, too.

By objectives, from the point-of-view of the design flow, formal verification
may be divided into property checking (is what I designed what I wanted?) and
equivalence checking (is what I produced at a certain design stage, the same as
what I had at the previous design stage?).

The objective of equivalence checking is to ensure that, in a design developed
through phases that refine previous stages, the refinement process preserves the
original behavior. So equivalence checking is a sanity check to guarantee that
we are maintaining the design integrity through the synthesis and optimiza-

3

tion phases. In theory these transformations should be correct by construction;
however the same tools that perform them should be formally verified, and the
process would be endless. So it is a good practice to check conformance of input
and output of each synthesis phase.

In property verification, given a transition system, we test whether the in-
formal description of the specification has been captured correctly by a formal
description with a hardware description language (an HDL), by checking whether
the system satisfies some property. Properties capture functionality, timing and
temporal relations, safety (is it possible for a bad event to happen?), liveness
(does an expected good event eventually take place?) and fairness (does every
request eventually receive service?).

Safety properties are the most common to express. For instance, do the traf-
fic light controllers of a crossroad make sure that intersecting road lines have
mutually exclusive rights of the way? As an example of liveness, in communica-
tion systems with lossy channels, we make certain types of fairness assumptions
about the loss of messages, i.e., if a message is transmitted infinitely many times,
then it will be received infinitely often. In such systems, in general, we can only
prove liveness properties. Fairness assumptions are often imposed upon liveness
properties, but are not needed for safety properties. In fact, the extent of the
role played by liveness and fairness properties is debated. It was suggested that
liveness property checking can be converted into safety property checking [SB04].

In this chapter we focus on safety properties because they are the most com-
monly used in hardware verification problems. Two important hardware veri-
fication problems, sequential equivalence checking and resetability verification,
fall into this category. They assert that something bad never happens during the
evolution of the system and their violation can be detected by analyzing finite
executions of the system. They can be posed as checking that some property p
holds in the reachable states R of system S starting from the initial state(s).
This checking justifies the crucial role played by reachability analysis in the ver-
ification of safety properties.

Notice that hardware designs may be specified hierarchically; this is also
consistent with how a human designer operates. In order to formally verify a
design, it must first be converted into a simpler “verifiable” format. The design
is specified as a set of interacting systems; each has a finite number of config-
urations, called states. States and transition between states constitute FSMs.
The entire system is an FSM, which can be obtained by composing the FSMs
associated with each component. Hence the first step in verification consists of
obtaining a complete FSM description of the system. Given a present state (or
current configuration), the next state (or successive configuration) of an FSM
can be written as a function of its present state and inputs (transition function
or transition relation).

1.2 Model Checking and Temporal Logics

In this subsection we briefly survey model checking of properties expressed in
temporal logics. A temporal logic is used to express the ordering of events in time

4

by means of operators that specify properties such as “property p will eventually
hold”. There are various versions of temporal logics, such as linear temporal logic
(LTL), computation tree logic (CTL), and other variants. Different temporal
logics can have different expressive powers. For instance, LTL and CTL are
incomparable. That is, there are temporal formulae in LTL not expressible in
CTL, and vice versa. Below we focus on CTL to exemplify temporal logics.

Computation trees are derived from state transition graphs. The graph struc-
ture is unwound into an infinite tree rooted at the initial state. Figure 1 shows
an example of unwinding a graph into a tree. Paths in this tree represent all pos-
sible computations of the system being modeled. Formulae in CTL refer to the
computation tree derived from the model. CTL is classified as a branching time
logic (in contrast to a linear time logic, such as LTL) because it has operators
that describe the branching structure of this tree.

R

Y G

R

RG

Y

Y

G G

R

R

unwind

Fig. 1. Unwinding of state transition graph.

Formulae in CTL are built from atomic propositions (where each proposi-
tion corresponds to a variable in the model), standard boolean connectives of
propositional logic (e.g., AND, OR, XOR, NOT), and temporal operators. Each
temporal operator consists of two parts1: a path quantifier A or E followed by
a temporal modality F, G, X, or U. All temporal operators are interpreted rel-
ative to an implicit “current state”. There are in general many execution paths
(sequences of state transitions) of the system starting at the current state. The
path quantifier indicates whether the modality defines a property that should
be true of all those possible paths (denoted by universal path quantifier A) or
whether the property needs only hold on some path (denoted by existential path

1 A formula that contains any temporal modality of F, G, X, and U without an
associated path quantifier A or E is not a legal CTL formula.

5

quantifier E). The temporal modalities describe the ordering of events in time
along an execution path and have the following intuitive meaning:

1. F φ (reads “φ holds sometime in the future”) is true on a path if there exists
a state in the path where formula φ is true.

2. G φ (reads “φ holds globally”) is true on a path if φ is true at every state
in the path.

3. X φ (reads “φ holds in the next state”) is true on a path if φ is true in the
state reached immediately after the current state in the path.

4. φ U ψ (reads “φ holds until ψ holds”, called “strong until”2) is true on a
path if ψ is true in some state in the path, and φ holds in all preceding
states.

The state of a system consists of the values stored in all registers. Each formula
of the logic is either true or false in a given state; its truth is evaluated from the
truth of its subformulae in a recursive fashion, until one reaches atomic propo-
sitions that are either true or false in a given state. A formula is satisfied by a
system if it is true for all the initial states of the system. If the property does
not hold, the model checker will produce a counterexample, that is an execu-
tion path that witnesses the failure. An efficient algorithm for automatic model
checking used also in VIS has been described by Clarke et al. [CGMZ95]. The
following table shows examples of evaluations of formulae on the computation
tree of Figure 1:

formula T/F
EG (RED) true
E (RED U GREEN) true
AF (GREEN) false

1.3 Tools and Representations

Tools for automatic formal verification have been based on various theoreti-
cal approaches, of which model checking and language containment have been
the most useful in hardware verification. In temporal logic model checking, the
properties to be checked are expressed as formulae in a temporal logic, and the
system is expressed as a finite-state system. In particular, CTL model checking is
a formalism pioneered by Clarke and Emerson [CES86] to verify whether a finite-
state system satisfies properties expressed as formulae in CTL, a branching-time
temporal logic. SMV [McM93], a system developed at Carnegie Mellon Univer-
sity, belongs to this class of tools. Symbolic trajectory evaluation [HS97] uses a
restricted form of linear temporal logic to express properties as bounded-length
sequences of circuit states. Verification is done by using an extension of symbolic
simulation.

2 “Weak until” is when φ holds forever, i.e., ψ is not required to hold at some state in
the future.

6

Certain properties are not expressible in CTL, but they can be expressed as ω-
automata. The second approach, language containment, requires the description
of the system and properties as ω-automata, and verifies correctness by checking
that the language of the system is contained in the language of the property.
Note that certain types of CTL properties involving existential quantification
are not expressible by ω-automata. COSPAN [Kur94], a system developed at
Bell Labs, offers language containment checking.

VIS [BHSV+96a,BHSV+96b], a system developed jointly at the University
of California at Berkeley and the University of Colorado at Boulder empha-
sizes model checking, but it also offers to the user a limited form of language
containment (language emptiness) checking.

The computation engines inside these tools represent and operate with dis-
crete functions, which represent sets of elements rather than individual elements.
Such techniques are often referred to as implicit/symbolic computation, in con-
trast to explicit/enumerative computation.

Implicit representations allow to operate on sets of states, instead of individ-
ual states. A typical example is the computation of the set of reachable states
from the initial states. Using binary decision diagrams (BDDs) as an underlying
data structure, there are cases when Boolean formulae and operations on them
can be performed efficiently even on instances of very huge size, where explicit
enumeration would fail. The reason is that the size of BDD representations is
not linear in the size of the represented sets. A paper summarized this state
of affair with the catchy title: ”Symbolic model checking: 1020 states and be-
yond” [BCM+92]. The other side of the coin is that this is not guaranteed to
happen, because there may be no such good representation with BDDs, or if it
exists, we may be unable to find it (the size of BDDs depends on the order of
the support variables). Issues of BDD ordering, partition of the system repre-
sentation, and new types of decision diagrams have been explored to represent
compactly important sets of Boolean and discrete functions.

In the last years, the role played by BDD computations has been restricted
due to their lack of robustness; at the same time improvements of SAT solvers
(which check the satisfiability of formulae with conjunctions of clauses) made
them the preferred computational engines and allowed a more judicious balance
in the usage of different function representations. In the rest of the chapter, we
will clarify the rationale behind these technical developments.

We can summarize the prevailing data representation and typical design size
in successive generation of tools as follows:

1. explicit representation, 104 states, 1980s;

2. implicit BDD-based representation, 1030 states, 1990s;

3. implicit SAT-based representation, 10100 states, 2000s.

In this survey we cannot provide a comprehensive coverage of hardware ver-
ification. We will focus on equivalence checking, which is a special case of safety
property checking. Even in the restricted domain, we have to leave out some
interesting topics and recent advances. An in-depth discussion on aspects of se-

7

quential equivalence checking will be given, because it is the most widely encoun-
tered case, still a subject of active theoretical and experimental investigation.

In Section 2 we introduce basic terminology and technical background. In Sec-
tion 3 we discuss the computational complexity of hardware equivalence check-
ing. In Section 4 we introduce combinational equivalence checking. In Section 5
we describe the basics of sequential equivalence checking, which is further ex-
panded in Section 6 introducing bounded and unbounded model checking. Sec-
tion 7 discusses how to bridge the gap between combinational and sequential
equivalence checking. Section 8 covers resetability verification and other vari-
ants of equivalence checking. Section 9 concludes mentioning advanced topics
and active research areas.

2 Preliminaries

In the sequel, as a notational convention, a vector (or an ordered set) v =
(v1, . . . , vn) is specified in a bold-faced letter. The cardinality of v is denoted as
|v|, and the (unordered) set {v1, . . . , vn} is denoted as {v}.

Characteristic Functions Progress since the 1980s in expanding the capa-
bility of formal verification can be attributed to the introduction of the data
structure called Reduced Ordered Binary Decision Diagram (ROBDD) [Bry86],
which turned out to be effective in representing and manipulating Boolean func-
tions. ROBDDs allowed to reduce computations on sets to Boolean computations
on their characteristic functions. A characteristic function, in our discussion, is
a (total) function χA : U → B, where U is a finite set and B = {false, true} or
{0, 1}, such that χA(s) = 1 ff s ∈ A. (In some applications, it can be extended
to multiple-valued output, e.g. {true, false,undefined}.) When represented in
computers, a characteristic function is often a Boolean formula where multiple-
valued symbols are encoded and expressed in a binary form. It serves as a pred-
icate indicating some membership problem. That is, the function χA answers a
query, whether an element e ∈ U is in A ⊆ U . Essentially, any finite set A can
be represented with a characteristic function χA such that an element e ∈ A if
and only if χA(e) = true. Thus set operations (e.g., intersection ∩, union ∪,
and complement) are in effect Boolean operations (e.g., conjunction ∧, disjunc-
tion ∨, and negation ¬, respectively) over characteristic functions. (false and
true can be seen as characteristic functions for the empty set ∅ and universal
set U , respectively.) In the sequel, we shall not distinguish a set (respectively
a set operation) and its corresponding characteristic function (respectively its
corresponding Boolean operation).

By dealing with characteristic functions, we are able to manipulate sets of
elements simultaneously rather than manipulate elements individually. For in-
stance, the intersection of two sets A and B can be done by performing χA ∧χB

rather than examine, for each element e ∈ A, whether e is in B as well. Such
approaches capable of manipulating sets of elements simultaneously are known

8

as (implicit) symbolic algorithms in contrast to the traditional (explicit) enu-
merative algorithms. Although BDDs and symbolic algorithms were once almost
synonyms, more recently other data structures were developed as alternatives
to BDDs. Notably, Boolean reasoning engines using SAT (satisfiability solving
over conjunctive normal forms) and AIGs (And-Inverter Graphs), for instance,
are gaining their popularity in hardware verification.

State Transition Systems We are concerned with the type of state transition
system called finite state machine (FSM).

Definition 1 (Finite State Machine). An FSM M is a tuple (Q,Q0, Σ,Ω, δ,λ),
where Q is a finite set of states, Q0 ⊆ Q is the set of initial states, Σ and Ω are
the input and output alphabets, respectively, and δ : Σ × Q → Q (respectively
λ : Σ ×Q→ Ω) is the transition function (respectively output function).

(In our discussion, we focus on Mealy-type FSMs, whose output valuations de-
pend on both input and state variables. The results can be applied to Moore-type
FSMs as well, whose output valuations depend only on state variables.) In the
sequel, we shall assume that δ and λ are total functions. That is, the FSMs to
be discussed are deterministic and completely specified.

In modern hardware designs, state, input and output symbols are encoded by
binary representations; transition and output functions are encoded by Boolean
functional vectors. Let s = (s1, . . . , sn) and s′ = (s′1, . . . , s

′
n) be the vectors of

(binary-valued) current- and next-state variables, respectively; let x = (x1, . . . , xk)
and y = (y1, . . . , yl) be the vectors of (binary-valued) input and output variables,
respectively. That is, vector s encodes the states Q, x encodes Σ, and y encodes
Ω. With notation [[v]] representing the set of all possible valuations (or inter-
pretations) on variables v, we have Q = [[s]], Σ = [[x]] and Ω = [[y]]. Also, let
δ = (δ1, . . . , δn) and λ = (λ1, . . . , λl). Then δi : [[x]]× [[s]] → [[s′i]] for i = 1, . . . , n
and λj : [[x]] × [[s]] → [[yj]] for j = 1, . . . , l. Given two states q0 and q1 of an
FSM with q1 = δ(σ, q0) for some σ ∈ Σ, q1 is called the successor of q0 under
σ, denoted as Succσ(q0), and q0 is called the predecessor of q1 under σ, denoted
as Predσ(q1).

An FSM (in the six-tuple form) can be alternatively represented with a graph.

Definition 2 (State Transition Graph). Given an FSM M = (Q,Q0, Σ,Ω, δ,λ),
it can be represented with a state transition graph (STG) G = (V,E), where any
state q ∈ Q is modeled as a vertex q ∈ V and any transition qt = δ(σ, qs) is
modeled as a directed edge (qs, qt) ∈ E labelled ‘σ/ω’ for ω = λ(σ, q). Also, for
initial states, their corresponding vertices are identified.

Example 1. Figure 2 shows the schematic diagrams of two FSMs M1 and M2

and their respective corresponding STGs G1 and G2.

Since the behavior of an FSM is described with transition functions, its state
transitions are deterministic. That is, given any input assignment and any cur-
rent state of the FSM, there is a unique next-state. A more general description

9

� � � �� � �� � �� � � � � �� �
� �� � � � � �� � �� � �� � � �� � �� � �� � � � � �

	
�	 ��

 �

Fig. 2. Two FSMs M1 and M2 (in schematic diagrams) with their corresponding
STGs G1 and G2 are shown in (a) and (b), respectively. In a schematic circuit dia-
gram, detailed functions are omitted and only connections are shown, and state-holding
elements are denoted with shaded boxes. An initial state in an STG is identified with
an arrowhead, e.g., state s0 in G1.

is to use transition relations instead of transition functions. In this case, non-
deterministic transitions can be handled. Essentially, a transition function can
be converted to a transition relation. We may consider the Cartesian product
Σ × Q as the new state space. By treating input variables as part of the state
variables, we can write T ((x, s), (x′, s′)) =

∧

i(s
′
i ≡ δi(x, s)), where the equality

sign “≡” means exclusive-nor, often denoted as ⊕, in Boolean operation. Since
input variables x′ of the next time frame are unconstrained, we write T (x, s, s′)
in place of T ((x, s), (x′, s′)) for short. Consequently, FSMs can be described with
transition relations in addition to transition functions. In the sequel, we may al-
ternatively use the more general transition relation notation, and describe an
FSM with the tuple (Q,Q0, Σ,Ω, T,λ).

To study the behavior between two FSMs subject to the same input stimuli,
we define a product machine as follows.

Definition 3 (Product FSM). Given two FSMs M1 = (Q1, Q
0
1, Σ,Ω, δ1,λ1)

and M2 = (Q2, Q
0
2, Σ,Ω, δ2,λ2), the product FSM of M1 and M2 is M× =

(Q1 ×Q2, Q
0
1 ×Q0

2, Σ,B, δ×,λ×) with

δ×(x, (s1, s2)) = (δ1(x, s1), δ2(x, s2)) and

10

� �� � � �� �� � �� � �� � � � � �� �� �
� �� �� � � � � �� � �� � �� �� �� � �

� � �� � �
� � �

� �� �� �� �� � � � � �

� �� � � � �� � �
	
�
	 �

Fig. 3. The product FSM of M1 and M2 of Figure 2, and its corresponding STG.

λ×(x, (s1, s2)) =
∧

i

(λ1i(x, s1) ≡ λ2i(x, s2)),

where x is the input variable vector, and s1 and s2 are the state variable vectors
of M1 and M2, respectively.

We call the STG G× of M× as the product STG of the STGs of M1 and
M2. Notice that by building the product FSM the state space may increase
substantially.

A product FSM M× is such that its two constituent FSMs M1 and M2

are executed synchronously with the same input stimuli while their outputs are
compared. The output of M× equals 1 if the outputs of M1 and M2 are the
same. Otherwise, 0 is produced. Recall and observe that the miter structure
in combinational equivalence checking can be considered as a special case of a
product FSM (with a single state).

Example 2. Figure 3 shows the product FSM M× of the FSMs M1 and M2 in
Figure 2, and the corresponding STG of M×.

To model the disjoint union of two FSMs, we define

Definition 4 (Multiplexed FSM). Given two FSMs M1 = (Q1, Q
0
1, Σ,Ω, δ1,λ1)

and M2 = (Q2, Q
0
2, Σ,Ω, δ2,λ2), the multiplexed FSM of M1 and M2 is

M⊎ = (Q1 ⊎Q2, Q
0
1 ⊎Q

0
2, Σ,Ω, δ⊎,λ⊎) with

δ⊎(x, (sα, α)) =

{

δ1(x, s1) if α = 1
δ2(x, s2) if α = 2

, and

λ⊎(x, (sα, α)) =

{

λ1(x, s1) if α = 1
λ2(x, s2) if α = 2

11� � � �� � �� � �� � � � � �
� � � �� � �� � �� � � � � �� �� �� � � � � �� � �� � �

�� 	
	 � ��
���

Fig. 4. The multiplexed FSM of M1 and M2 of Figure 2, and its corresponding STG.

where symbol ⊎ denotes the disjoint union operator, α = {1, 2} acts as a machine
indicator, x is the input variable vector, and s1 and s2 are the state variable
vectors of M1 and M2, respectively.

We call the STG G⊎ of M⊎ as the disjoint union STG of the STGs of M1 and
M2. Notice that the state space of a multiplexed FSM is the disjoint union of
those of its two constituent FSMs and it is usually much smaller than the state
space of the product FSM.

Suppose that M1 and M2 have m1 and M2 registers respectively and that
m2 ≥ m1. To minimize the state variables of the multiplexed machine, we pair
arbitrarily every next state variable of M1 with one of M2. The pair is then
multiplexed before being fed to a register, whose output is then demultiplexed to
recover the current state variables for M1 and M2. In addition one self-looped
auxiliary state variable is added, α, which controls all multiplexers, as indicated
by the dotted lines in Figure 4; the value α stays constant as its initial value.

A multiplexed FSM includes its two constituent FSMs and acts as M1 or
M2 depending on the machine indicator α. Although a multiplexed FSM is not
as intuitive as a product FSM, its usefulness in equivalence verification will be
demonstrated later in Section 5.

Example 3. Figure 4 shows the multiplexed FSM M⊎ of M1 and M2 of Figure 2,
and the corresponding STG of M⊎. Note that the pairing of transition functions
between M1 and M2 for the inputs of a multiplexor can be arbitrary, whereas
that of output functions needs to be the corresponding pairs. When α = 0
(respectively α = 1), M⊎ behaves like M1 (respectively M2) of Figure 2. In
the STG of M⊎, states with α = 0 are {s0, s1}, and those with α = 1 are
{t0, . . . , t3}.

12

Image and Pre-image Computation There are two important operations
that are key ingredients to formal hardware verification. The image of state set
C ⊆ Σ×Q, which depends on both input variables x and current-state variables
s, with respect to transition relation T is computed as

Img(C, T) = [∃x, s.(T (x, s, s′) ∧ C(x, s))]s′←s,

where the above subscript denotes the substitution of s in place of s′ in order
that the resulting image depends on current-state variables rather than next-
state variables. (Rigorously speaking, the above C(x, s) means χC(x, s).) It
characterizes the set of states that can be reached under the inputs and current
states constrained by C. On the other hand, the pre-image of C† over next-state
variables with respect to transition relation T can be computed as

PreImg(C†, T) = ∃x, s′.(T (x, s, s′) ∧C†(s′)).

It characterizes the set of states that can reach C† in one step under some input
assignments to variables x.

Given initial states I and an input sequence σ = σ1, . . . , σn for σi ∈ Σ
the image computation can be applied to obtain the destination states D with
respect to a transition relation T as follows.

D0 = I(s)

...

Dn = Img(σn(x) ∧ Dn−1(s), T (x, s, s′))

Then the set of states Dn equals D. We denote the destination states D of
initial states I under input sequence σ with respect to transition relation T as
D = Img

σ
(I, T).

Definition 5. A state set C ⊆ Q is called closed under a transition relation T
if {C ∪ Img(C, T)} ⊆ C. Otherwise, C is open.

That is, a closed state set C cannot transition out of C under any inputs.
Let σ1 and σ2 be two input sequences. We denote their concatenation as

σ1 ◦ σ2, meaning that σ1 is applied first and then followed by σ2.

3 Computational Complexity of Equivalence Checking

3.1 Complexity of Combinational Equivalence Checking

Combinational equivalence checking (CEC) is basically tautology checking of
Boolean expressions.

CEC of Boolean Circuits
instance: Two combinational Boolean circuits C1 and C2.
question: Are the output values of C1 and C2 the same for each input vector?
That is, are C1 and C2 equivalent?

13

Theorem 1. CEC is coNP-complete.

The proof is by reduction from validity, i.e., given an instance of validity
checking of formula φ, we build polynomially an instance of CEC as follows:
C1 is the natural circuit representation of the formula φ and C2 is any circuit
representing the function constant 1. Then C1 is equivalent to C2 if and only
if φ is valid. If a formula φ is not valid, then it can be disqualified succinctly
by providing a truth assignment that does not satisfy φ. On the other hand, a
valid φ has no such disqualification. VALIDITY is also called TAUTOLOGY.
Checking the VALIDITY of a Boolean expression in disjunctive normal form
(DNF) is coNP-complete. Any language L in coNP is reducible to VALIDITY.
A string x is in L if and only if the formula ϕx in DNF by the reduction from L
to VALIDITY is valid. Indeed, if L is in coNP, then its complement L is in NP.
Hence there is a reduction from L to SAT. A string x is in L if and only if the
formula ϕx in conjunctive normal form (CNF) by the reduction is satisfiable.

3.2 Complexity of Sequential Equivalence Checking

The complexity measure of sequential equivalence checking (SEC) depends on
how state-transition systems are represented. When they are represented explic-
itly by state-transition graphs, the corresponding SEC is tractable in terms of
the size of the graphs. When they are represented by sequential circuits (with
logic gates and memory elements), the corresponding SEC is intractable in the
size of the circuits.

SEC of Deterministic Automata (explicit graph representation)
instance: Two deterministic finite automata A1 and A2.
question: Are the output languages produced by A1 and A2 the same?

The problem is in P (solvable in polynomial time in the size of the input
graph), because we can perform state minimization of A1 and A2. It is well-
known that, given a finite automaton or finite transducer, state minimization
yields a unique minimum automaton up to state renaming. So the SEC problem
is reduced to verifying the isomorphism of the two state-minimized automata.
Notice that graph isomorphism is not an easy problem; however comparing the
graphs of the two minimized automata is easy because they are special graphs
with a unique starting state and unique edge labelling for every state.

The SEC problem becomes harder when the state-transition system is not
given explicitly via a graph, but implicitly via a circuit (or a program) that
encodes the graph. So a sequential circuit can be seen as a succinct representation
of a graph G = (V,E) with states V and (labelled) transitions E ⊆ V × V . An
edge (s, t) ∈ E with label a denotes that t is the next state of s under input a. In
this way we are encoding an exponentially large graph into a small circuit, but the
reachability problem on the succinct graph representation jumps in complexity
from P to PSPACE.

SEC of Sequential Circuits (implicit graph representation)
instance: Two sequential Boolean circuits C1 and C2 with the same input and

14

output variables, and with respective initial states s1 and s2.
question: Are the output sequences of C1 and C2 the same for every sequence
of input vectors?

The negation of the above problem can be stated as follows.

SNEC of Sequential Circuits (implicit graph representation)
instance: Two sequential Boolean circuits C1 and C2 with the same input and
output variables, and with respective initial states s1 and s2.
question: Is there a sequence of input vectors such that C1 and C2 differ in at
least one output value?

Theorem 2. SNEC is PSPACE-complete.

Proof. We show first that it is in PSPACE, because the following polynomial-
space algorithm decides the language. For convenience, consider the product
machine of C1 and C2 with initial state s = (s1, s2). The algorithm first guesses
the length l of a path from s providing a counter-example to equivalence, and
then guesses its l − 2 inner vertices and the final vertex t (vertices are states of
the product machine).

1. Guess a number l ∈ {2, 3, . . . , 2n}, where n is the the number of storage
elements in the product machine (i.e., the sum of the number of storage
elements in C1 and C2), and so 2n is an upper bound on the length of a
counter-example to equivalence.

2. Set k = 1.
3. Repeat until k is equal to l− 1:

(a) Guess vk ∈ B
n (a state of the product machine) and an input vector i.

(b) Simulate the product machine of C1 and C2 from state vk−1 under i:
If vk is not the next state of vk−1 (with v0 = s) under i “reject”,
else if C1 and C2 differ at vk in at least one output “accept” (vk = t)
else if k = l − 1 “reject”.

(c) Set k = k + 1.

The above simulation of the product machine takes polynomial space.
SNEC is PSPACE-hard. Let L be an arbitrary language in PSPACE and ML

be a Turing machine3 deciding L using space no more than poly(n), polynomial
in the size n of the input given to ML. We show that L ≤p SNEC, namely, L is
polynomial-time reducible to SNEC.

The idea of the reduction is to build in polynomial time a circuit that is
an implicit representation of the configuration graph of ML. The vertices of
the configuration graph are represented by the encoded vectors stored in the
memory elements of the sequential circuit. The number of memory elements is
a polynomial in n because each configuration can grow at most as a polynomial
in n.

3 We assume that ML is a deterministic Turing machine, due to the theorem by Sav-
itch [Sav70], stating that a non-deterministic Turing machine using f(n) space can
be simulated by a deterministic Turing machine using f2(n) space for any polynomial
function f . So the simulation preserves polynomial space.

15

Given an input string w to ML with |w| = n (size of the input), the possible
configurations of ML when running on w are of length at most poly(n). Each
configuration can be represented as a sequence of poly(n) cells where each cell
contains either a symbol from the work alphabet of ML or a symbol from the
state set. Therefore each cell can be represented by a constant number c of bits
(that does not depend on the input length) and the entire configuration can be
represented by a sequence of m = c · poly(n) bits. In addition we define a vector
of m bits that does not represent a configuration, but instead means “accepted”
and another vector of m bits meaning “rejected”.

Given w, let us see in detail how to build an instance of SNEC.
First we construct a sequential circuit Cw

1 that emulates a run of ML on w.
This sequential circuit has m storage elements (to store the configurations of
ML running on w) and logic circuitry computing the next configuration yielded
by the current configuration. The circuitry will implement with logic gates the
transition relation of the Turing machine ML, in practice a look-up table will do.
Two states correspond to the vectors for “accepted” and “rejected”, respectively.
The initial state s1 of Cw

1 corresponds to the initial configuration of ML on w.
Moreover, Cw

1 outputs 1 in every state. We can build in polynomial time the
sequential circuit Cw

1 that works in polynomial space. Notice that this sequential
circuit is autonomous, i.e., it has no inputs, except the clock.

Finally, to complete the construction of the instance of SNEC, we build Cw
2

as a copy of Cw
1 , which differs from Cw

1 only in the fact that it outputs 0 in the
accepted state of Cw

2 . As before, the initial state s2 of Cw
2 corresponds to the

initial configuration of ML on w.
In summary, we established PSPACE-hardness, because

1. The overall reduction can be done in polynomial time.
2. ML accepts w if and only if, starting respectively from s1 and s2, C1 and C2

reach a state where they differ in at least one output value.

The fact that SNEC is PSPACE-complete implies by definition that its comple-
ment problem SEC is coPSPACE-complete. By a theorem of Immerman [Imm88]
and Szelepscenyi [Sze88], it holds that NSPACE = coNSPACE; by a theorem of
Savitch [Sav70] it holds that PSPACE = NSPACE. So it follows that PSPACE =
coNSPACE = coPSPACE.

Corollary 1. SEC is PSPACE-complete.

It was proved recently in [JB06] that even a restricted case of sequential
equivalence checking where the circuits differ only by retiming and resynthesis
transformations it is still PSPACE-complete (by reduction from finite function
generation [GJ79]).

4 Combinational Equivalence Checking

Given two combinational Boolean circuits C1 and C2, the problem is to check
whether the corresponding outputs of the two circuits are the same for every

16

C1

C2

O

Fig. 5. Single-output miter circuit from networks C1 and C2.

C1

C2

…
…

…

…
…

C1,1

C1,m

C2,1

C2,m

O

Fig. 6. Multi-output miter circuit from networks C1 and C2.

input vector i = (i1, . . . , in). For single-output circuits, their equivalence can be
expressed as

∀i.(C1(i) ≡ C2(i)). (1)

For multi-output circuits with outputs C1,j and C2,j , where j = 1, . . . ,m, their
equivalence can be expressed as:

∀i.

m
∧

j=1

(C1,j(i) ≡ C2,j(i)). (2)

The tautology checking of Formulas (1) and (2) can be achieved through
the so-called “miter” circuit construction [Bra93] as shown in Figures 5 and 6,
respectively. A counterexample to equivalence exists if and only if there is an
input vector that makes the output of a miter circuit false. Observe that the
miter circuit of CEC is similar to the product machine of SEC.

The tautology checking can be alternatively negated for satisfiability check-
ing. Technically speaking, it makes no difference between tautology checking and

17

satisfiability checking. One can dually define the miter circuit construction by
replacing the XNOR-gates with XOR-gates and by replacing the final AND-
gate with an OR-gate. Then the previous statements are dualized in that circuit
equivalence is the same as the miter circuit being satisfiable at the output.

We will review the foundations of the two basic approaches to combinational
equivalence checking: functional techniques and structural techniques. Surveys of
CEC techniques can be found in [JNFSV97] for early work, and in [KB02,FKS05]
for more recent work.

4.1 Functional Combinational Equivalence Checking

In functional combinational equivalence checking, the functions realized by the
two circuits are compared directly by representing them with canonical repre-
sentations (they guarantee a unique form for a given function). Since Bryant’s
influential paper [Bry86], ROBDDs have been the most widely used canonical
data structure for Boolean functions. For instance, given the miter construction
in Figure 6, one builds the ROBDD for O =

∧

j(C1,j ≡ C2,j). If the BDD rep-
resents constant 1, C1 and C2 are equivalent. Otherwise, C1 and C2 are not.
Notice that the ROBDD representing the constant-1 function has a unique rep-
resentation by the constant-1 terminal node.

A major problem is that ROBDDs may be unable to represent circuits with
a large number of primary inputs, and in general their growth is not bounded a
priori by tight bounds. To overcome this problem, structural properties of the
multi-level representations of the circuits must be exploited in the equivalence
check.

4.2 Structural Combinational Equivalence Checking

Structural techniques exploit the circuit gate-level representation to verify equiv-
alence. Two common structural techniques are based on SAT solving and Auto-
matic Test Pattern Generation (ATPG) [KMSM01].

Combinational Equivalence by SAT Given the miter of Figure 5, its output
produces 0 under some input truth assignment if and only if the two circuits C1

and C2 represent different Boolean functions. A SAT solver can be used to search
a counterexample to equivalence.

To apply SAT we must translate a circuit structure into a CNF, by introduc-
ing new variables for all circuit nodes and adding relational constraints in CNF to
model the functionality of each gate (as originally proposed by Tseitin [Tse70]).
The translation is linear in the number of gates if the fanin sizes of XOR-gates
and XNOR-gates are upper bounded by a constant.

Example 4. Consider the circuit of Figure 7. By Tseitin’s circuit-to-CNF con-
version, in addition to the primary input variables a, b, and c, variables x, y,

18

b

a

c

x

f

y

Fig. 7. A combinational circuit for circuit-to-CNF conversion.

and f are added to represent the logic values of the gate outputs. The CNFs of
the upper AND-gate, lower AND-gate, and OR-gate are

(a ∨ b ∨ x)(a ∨ x)(b ∨ x), (3)

(b ∨ c ∨ y)(b ∨ y)(c ∨ y), and (4)

(x ∨ y ∨ f)(x ∨ f)(y ∨ f), respectively. (5)

The CNF of the whole circuit is simply the conjunction of Formulas (3), (4), and
(5), namely,

(a ∨ b ∨ x)(a ∨ x)(b ∨ x)(b ∨ c ∨ y)(b ∨ y)(c ∨ y)(x ∨ y ∨ f)(x ∨ f)(y ∨ f).

Even though SAT is NP-complete, much progress has been made into engi-
neering methods that solve instances of practical interest. A modern SAT solver
may deploy a mixture of backtrack search, implication (Boolean constraint prop-
agation), conflict analysis, resolution, non-chronological backtracking (conflict-
based learning), and two-literal watching. We refer to specialized literature to
study the topic.

Combinational Equivalence by ATPG Automatic Test Pattern Generation
(ATPG) has the goal to generate a test for every fault in a circuit. Under the
stuck-at-fault model, for a test to exist there must be a set of input assignments
such that the fault under test can be

1. activated, i.e., the faulty stuck-at-1 signal is set to 0 and stuck-at-0 signal
to 1, and

2. observed at the primary outputs, i.e., the faulty effect at the fault location
propagates to at least one primary output.

The connection between ATPG and equivalence checking is that, given the
miter circuit of Figure 6, if the stuck-at-1 fault at O is not testable, then C1

is equivalent to C2. Otherwise the test patterns are counterexamples to the
assertion of equivalence.

19

Plain SAT- and ATPG-based CEC tend to fail if the size of the miter circuit
is large. A key idea to alleviate this problem is to exploit similarities between C1

and C2 for miter circuit reduction. The similarities are likely to exist when many
internal nodes in C1 and C2 are equivalent. It is expected that the circuits to be
compared share structural and functional similarities, because usually CEC is
applied to verify the correctness of incremental synthesis steps. So, for each node
n1 in a given list of good candidate nodes in C1, and for each node n2 in a given
list of good candidate nodes in C2, one builds the miter circuit z = (n1 ≡ n2).
If z stuck-at-1 is not testable or SAT does not find a falsifying assignment, then
n1 and n2 are equivalent. Otherwise, a counterexample is found and they are
inequivalent. Identification of the internal equivalences is intrinsically a difficult
problem. It is usually done by scanning the circuit from inputs to outputs, with
a variety of methods from local analysis to comparison of local BDDs.

In identifying equivalent nodes, if n1 and n2 turn out to be equivalent, then
there can be different strategies to simplify the miter circuit. One (safe) method
is to merge n1 and n2 by replacing n2 with n1. Another more aggressive (but
unsafe) method is to substitute a free variable for both n1 and n2 in the miter
circuit. The latter may result in false negatives, that is, C1 and C2 may be
declared inequivalent even if they are equivalent, because the newly added vari-
ables are unconstrained and allow truth assignments that are infeasible due to
the constraints imposed by the sub-circuits of n1 and n2. To fix this problem, one
has to partition carefully the circuit and in the worst-case enlarge the partition
to include the primary inputs. Or, one can apply range-preserving parametric
representation for miter circuit rewriting.

There is a close relationship between ATPG and SAT [KMSM01]. On the
one hand, ATPG can be seen as SAT solving directly over circuits rather than
CNF formulas. On the other hand, ATPG can be reformulated as standard SAT
solving by expressing the constraints of fault-activation and observation as a
CNF formula. ATPG and SAT have their own strengths and weaknesses. ATPG
has better circuit information for Boolean reasoning; SAT has a simpler and
more generic data structure for Boolean reasoning. In practice, efficient hybrid
methods deploying features of both ATPG and SAT have been developed.

4.3 Trading Off Canonicity vs. Structure

Between the two extremes of functional equivalence checking with canonical rep-
resentations, like ROBDDs, which do not scale well, and structural equivalence
checking directly on the network, a middle ground has been found with “inter-
mediate” representations that store efficiently the multi-level network by using
structural hashing to detect common subnetworks.

One such data structure is AND-Inverter graphs (AIGs), which are Boolean
networks composed of two-input AND-gates and inverters represented as flipped
bits on the edges [KPKG02]. AIGs are a multi-level logic representation whose
construction time and size are proportional linearly to the size of the circuit.
AIGs are not canonical. That is, a Boolean function has many AIG represen-
tations. For example, function F = abc can be represented as ((ab)c), (a(bc)),

20

((ac)(bc)), etc. However, when comparing circuits C1 and C2, structural graph
hashing can be applied to their AIGs to identify structurally identical subgraphs
in the miter structure. The AIG representation of the miter is constructed from
the inputs to the outputs in topological order, as it is done with BDDs; be-
fore adding a new AND vertex, a hash-lookup checks for the existence of a
structurally equivalent vertex, and, if it exists, uses it to realize the current
AND [KvE01].

Since AIGs are not canonical, internal nodes of an AIG may have equivalent
functionality. This increases the number of AIG nodes and makes reasoning
on the graph structure inefficient and time consuming. An algorithm to detect
and merge equivalent nodes (called functional reduction) during the process
of AIG construction has been presented in [MCJB05]; this construction yields a
functional representation called Functionally Reduced AIGs (FRAIGs). FRAIGs
are “semi-canonical” because no two nodes in a FRAIG have the same function
in terms of the primary inputs, but the same function may have different FRAIG
structures. The construction uses simulation and SAT.

It is the small set of base functions (two-input AND-gates and inverters) that
makes AIGs structure hashing efficient and makes them preferable in scalable
Boolean function manipulation.

There are other noncanonical representations, such as Boolean Expression Di-
agrams (BEDs) and extended BDDs (XBDDs), that use richer sets of base func-
tions. The BED data structure [HWA99] is obtained by extending the ROBDD
representation with operator vertices, besides variable vertices; a variable vertex
(inherited from standard BDDs) has as attributes a variable and two child ver-
tices, whereas an operator vertex has as attributes a binary Boolean operator
and two child vertices. Any Boolean circuit can be transformed into a BED by
a translation linear in size. For instance, since there are combinational circuits
implementing multiplication using only a quadratic number of gates, there are
BEDs of this size representing them. Moreover, BEDs can recognize and share
identical sub-expressions. The other side of the coin is that BEDs are not canon-
ical. In contrast, XBDDs [PHS94] are obtained by adding structural variables
which can be both universally and existentially quantified. Quantifications are
described as annotations on pointers leading to nodes with structural variables.

5 Sequential Equivalence Checking

In the design process of a hardware system, a design may be transformed (man-
ually by circuit designers or automatically by software tools) back and forth to
explore an optimal implementation with respect to some design criteria. These
transformations may introduce errors in the design. It is crucial to ensure that
the final optimized design is indeed equivalent to the original one. Therefore,
equivalence verification is one of the most important problems in ensuring the
correctness of hardware designs.

When two circuits under comparison contain no state-holding elements (regis-
ters), the corresponding verification problem is called combinational equivalence

21

checking; in contrast, when the circuits under comparison contain registers, the
corresponding verification problem is called sequential equivalence checking. In
fact, combinational equivalence checking can be seen as a special case of se-
quential equivalence checking since a combinational circuit can be modeled as a
single-state finite state machine. We argued in Section 3 that the computational
complexity of combinational equivalence checking is coNP-complete whereas that
of sequential checking is PSPACE-complete. Even though combinational equiva-
lence is likely to be intractable [GJ79] (not solvable in deterministic polynomial
time) in theory, it is considered to be efficiently solvable in practice in most design
instances (except for arithmetic circuits). As a matter of fact, the equivalence
of combinational circuits of multi-million logic gates has been demonstrated,
e.g., [KK97]. This apparent contradiction arises from the fact that, in real-world
designs, two circuits under comparison mostly possess structural similarities to
a large extent. This structural information provides hints assisting equivalence
checking. Nevertheless, structural similarities in sequential equivalence checking
may not be as helpful as in the combinational case. As a result, there is still
no efficient solution to sequential equivalence checking even in practical appli-
cations. In the section we study approaches to general sequential equivalence
checking; in the next two sections we will discuss some reduction techniques to
make sequential equivalence checking more like a combinational one.

To begin with, we define

Definition 6 (k-step State Equivalence). Two states q1 and q2 of an FSM
(Q,Q0, Σ,Ω, T,λ) are k-step equivalent, denoted as q1 ∼k q2, if they satisfy the
relation ∼k that is defined inductively as follows:

q1 ∼0 q2 : ∀σ ∈ Σ.(λ(σ, q1) ≡ λ(σ, q2))

...

q1 ∼k q2 : (q1 ∼k−1 q2) ∧ ∀σ ∈ Σ.(Imgσ(q1, T) ∼k−1 Imgσ(q2, T))

It can be easily checked that ∼k is reflexive, symmetric and transitive, and thus
forms an equivalence relation. Moreover, when viewed as a set, ∼k is monotoni-
cally decreasing, i.e., ∼k ⊇ ∼k+1, for k = 0, 1, . . . because (q1, q2) ∈∼k+1 implies
(q1, q2) ∈∼k. In particular, if ∼k = ∼k+1 for some k, then ∼k+i = ∼k+i+1 for
i = 0, 1, Such ∼k, denoted as ∼∗, is known as the greatest fixed-point of the
k-step state equivalence of an FSM.

The partition induced by ∼∗ is one instance of the so-called stable partition.

Definition 7 (Stable Partition). A partition π is stable with respect to a
transition relation T , if for any q1, q2 in the same block of π and (q1, q

′
1) ∈ T ,

then there exists q′2, with (q2, q
′
2) ∈ T , in the same block as q′1.

The above fixed-point computation is a process of stabilization for a given arbi-
trary initial partition (not necessarily the partition ∼0 induced by the observa-
tional equivalence due to the outputs λ). In fact, the fixed point derived in this
way is the coarsest stable partition that refines the initial partition. (A partition

22

π1 refines another π2 if any two elements in a block of π1 are also in a block of
π2.)

Relation ∼∗ is equivalent to the state equivalence defined below.

Definition 8 (State Equivalence). Two states q1 and q2 of an FSM M =
(Q,Q0, Σ,Ω, T,λ) are equivalent, denoted as q1 ∼ q2, if λ(σ′, Img

σ
(q1, T)) =

λ(σ′, Img
σ
(q2, T)) for every σ′ ∈ Σ and every finite (including empty) input

sequence σ ∈ Σ∗.

That is, starting from either q1 or q2 with q1 ∼ q2, an FSM behaves indistin-
guishably from its input-output behavior. It can be shown that ∼ and ∼∗ are
identical. As a matter of fact, ∼∗ can be seen as an operational definition of ∼. It
allows a finite computation of state equivalence. (As a side note, it is possible to
define other notions of state equivalence, whose distinguishing capabilities may
induce a preorder � on different equivalence definitions. For instance, equiva-
lence relation ∼S , with q1 ∼S q2 if and only if q1 = q2, is the most distinguishing
state equivalence relation, and thus is on the top of the preorder. On the other
hand, equivalence relation ∼U , with q1 ∼U q2 for any states q1, q2, is the least
distinguishing state equivalence relation, and thus is at the bottom of the pre-
order. In comparison, we see that ∼U � ∼ � ∼S among other possible definitions
of state equivalences.)

The state equivalence of an FSM can be straightforwardly generalized to
state equivalence among multiple FSMs by treating the disjoint state spaces as
a single large state space. On the other hand, we may define FSM equivalence
as follows.

Definition 9 (FSM Equivalence). Two FSMs M1 and M2 are equivalent
if starting from their respective initial states, their input-output behaviors are
indistinguishable.

Given two FSMs, the problem of sequential equivalence checking asks if these
two machines are indistinguishable from their output sequences under any input
sequence. Notice that, even if any state of one FSM has a corresponding equiva-
lent state in the other, the two FSMs may be inequivalent unless they start from
equivalent initial states.

Based on their underlying data structures, verification approaches can be
divided into two classes: that of explicit enumerative algorithms and that of
implicit symbolic algorithms. The former perform manipulations directly over
state transition graphs (e.g., reachability analysis based on traversal on state
transition graphs); the latter, on the other hand, perform manipulations over
characteristic functions representing state sets, where characteristic functions
are realized be some abstract data types, such as ROBDD, CNF, AIG, etc. (e.g.,
reachability analysis based on Boolean manipulations).

Before effective data structures and algorithms were available for Boolean
manipulations in the late 1980s, early verification algorithms performed explicit
enumeration over state transition graphs. Since the late 1980s, verification algo-
rithms have relied on implicit manipulations over Boolean formulae and char-
acteristic functions. Since STGs (in a graph representation) and FSMs (in a

23

six-tuple representation) point to the same state transition system, verification
can be done both explicitly over STGs or implicitly over FSMs.

Before delving into the algorithms, we introduce some FSM constructs (and
thus their STG counterparts) that will be useful later on.

Definition 10 (Quotient FSM). Given an FSM M = (Q,Q0, Σ,Ω, δ,λ), its
quotient FSM M/∼ = (Q/∼, Q

0
/∼, Σ,Ω, δ/∼,λ/∼) (with respect to relation ∼)

is obtained by collapsing equivalent states C = {qi ∈ Q | qi ∼ q for some q ∈ Q}
into its arbitrary representative state, denoted as qC ∈ Q/∼, of the equivalence
class. In addition, for any σ ∈ Σ,

qC ∈ Q0
/∼ ⇔ C ∩Q0 6= ∅,

qC2 = δ/∼(σ, qC1) ⇔ q2 = δ(σ, q1) for some q1 ∈ C1, q2 ∈ C2, and

ω = λ/∼(σ, qC) ⇔ ω = λ(σ, q) for some q ∈ C.

(Recall the assumption that all initial states in an FSM have to be equivalent.
So under this assumption there is a single initial state in any quotient FSM.)
Also, we call the STG G/∼ of M/∼ as the quotient STG of M.

We can think of M/∼ as a reachability-preserving abstraction of M with
respect to the partition ∼ imposed by the observational equivalence of output
functions. It is an abstraction in the sense that some detailed state information
is hidden and the FSM is simplified. The abstraction is reachability-preserving
in that, for any σ ∈ Σ, if ∃ q1 ∈ C1. δ(σ, q1) ∈ C2, then ∀ q1 ∈ C1. δ(σ, q1) ∈
C2. The significance of this kind of abstraction is that, for a given property to
be verified which can be formulated as a reachability problem, there exists a
reachable state violating the property in the original transition system if and
only if there exists a reachable bad state in the abstracted counterpart. Hence
the abstraction is both sound and complete for safety property checking. For
instance, in M/∼, λ induces an initial partition ∼0 (which distinguishes states
with different output observations, i.e., our concerned property) over the state
space Q. We may study if some state in one block of ∼0 is reachable from a
state in another block. The answer is the same, no matter whether the analysis
is conducted over M or M/∼. This kind of abstraction is helpful in simplifying
sequential equivalence checking and other general safety property checking.

5.1 Explicit Graph Algorithms

In discussing explicit graph algorithms, we are concerned with STGs (instead
of FSMs in the six-tuple representation). We introduce three STG-based ap-
proaches for sequential equivalence checking. One relies on analyzing reacha-
bility on a product STG. Another relies on checking the isomorphism between
two quotient STGs. The third one, similar to the previous one though, relies on
building the quotient of a disjoint union STG.

24

Reachability Analysis in the Product of Two STGs In reachability anal-
ysis, one wants to assert that bad states of an STG are unreachable from its
initial states. In the context of equivalence checking of two STGs G1 and G2,
we are concerned with their product STG G×. A state of G× is bad if any of its
outgoing edges contains a 0, instead of a 1, in the output label.

Example 5. In Figure 3, states {(s0, t1), (s0, t2), (s1, t0), (s1, t3)} are bad.

Proposition 1. Two STGs are equivalent if and only if any output label on the
edges in the reachable subspace of their product STG is 1.

Reachability analysis on an STG with n vertices and m edges can be done,
e.g. by a breadth-first traversal, in linear time complexity O(m + n). Assume
the input alphabet is of size k, i.e. |Σ| = k. Then m = kn and the above
complexity can be rewritten as O(kn). Therefore, to traverse the product space
of two STGs G1 = (V1, E1) with |V1| = n1 and G2 = (V2, E2) with |V2| = n2,
the time complexity is of O(kn1n2).

Isomorphism of the Quotients of Two STGs In addition to the previous
approach based on reachability, the equivalence of two STGs can be alternatively
formulated based on the partition induced by state equivalence. Essentially,

Proposition 2. The quotients of equivalent STGs are canonical (i.e. unique up
to an isomorphism).

Proof. For two equivalent STGs G1 and G2, there exists a bijection between the
equivalence classes of states and their initial states must be in corresponding
equivalence classes. Otherwise, there exists an input sequence that can drive G1

and G2 into inequivalent states. Since states in an equivalent class are merged in
computing a quotient, there exists a bijection between equivalent states of G1/∼

and G2/∼. That is, G1/∼ and G2/∼ are isomorphic. The proposition follows.

Therefore to check the equivalence of two FSMs, one can first canonicalize the
corresponding STGs into their quotient (state-minimized) forms, and then check
their graph isomorphism. Two FSMs are equivalent if and only if their quotient
STGs are isomorphic (including the matching of initial states) in the reachable
state subspace.

The computation of equivalent states is, in fact, already implicit in Defini-
tion 6. Figure 8 sketches a procedure computing equivalent states. The initial
partition is induced by ∼0. The partition is then iteratively refined. A block
Bj in the current partition π(i) is split into several sub-blocks such that two
states q1, q2 ∈ Bj are in different sub-blocks if and only if ∃σ ∈ Σ such that
the successor of q1 and that of q2 under σ go to different blocks in π(i). The
procedure terminates when no more refinements can be made. Any block in the
final partition represents an equivalence class of states. Given a state equivalence
partition, the corresponding quotient STG can then be constructed by merging
equivalent states.

25

ComputeEquivalentStates

input: an STG G

output: the coarsest partition π of equivalent states of G
begin

01 i := 0

02 let π(i) be the partition of states induced by ∼0

03 repeat

04 i := i+ 1

04 π(i) := ∅

05 for each block Bj ∈ π(i−1)

06 refine Bj into a partition πBj
= {Ck} with

q1, q2 ∈ Ck ⇔ ∀σ ∈ Σ, ∃Bl ∈ π
(i−1).Succσ(q1),Succσ(q2) ∈ Bl

07 π(i) := π(i) ∪ πBj

08 until |π(i)| = |π(i−1)|

10 return π(i)

end

Fig. 8. An algorithm that computes the coarsest partition of the state equivalence of
a given STG.

For an STG with n vertices and m edges, an analysis shows that the above
algorithm for computing equivalent states may take up to n iterations. Because
in each iteration, we may need to traverse m edges, the total time complexity is
of O(mn). An improved algorithm that constructs the coarsest stable partition
in O(m log n) time can be found in [Hop71]. (The result was extended in [PT87]
to relational coarsest partition and may deal with nondeterministic transitions
beyond STGs.) Moreover, constructing the quotient STG for a given partition
can be done in O(m+ n) time. Consequently, the total time complexity in con-
structing a quotient STG can be achieved in O(m log n) time. On the other
hand, the isomorphism checking of two quotient STGs is of linear time com-
plexity in the graph size. (The isomorphism checking here is much easier than
general graph isomorphism checking because the quotient STGs are determin-
istic in their state transitions and the correspondence of their two initial states
is known.) Consequently, equivalence checking of two STGs, G1 = (V1, E1) with
|V1| = n1, |E1| = m1 and G2 = (V2, E2) with |V2| = n2, |E2| = m2, is of time
complexity O(m1 logn1 +m2 logn2). In terms of the alphabet size |Σ| = k, the
complexity can be reexpressed as O(k(n1 logn1 + n2 logn2)).

State Equivalence in the Disjoint Union of Two STGs In the previous
approach, the quotients of two STGs are derived individually and then compared.
Here we show that the quotient computation can be computed once, and further
that isomorphism checking is unnecessary.

Again, the same procedure of Figure 8 is used. However this time, rather
than minimizing STGs G1 and G2 individually twice, we apply the procedure
once on the disjoint union G⊎ of the two constituent STGs. In the end, the
algorithm yields a partition that contains the state equivalence information not

26

only within the individual STGs but also the equivalence information between
them. Essentially,

Proposition 3. Two STGs G1 and G2 are equivalent if and only if their initial
states are in the same equivalence class of their disjoint union STG.

Even though the computation is simplified, the time complexity is essentially
the same, i.e., O(k(n1 log n1 + n2 logn2)), as the previous algorithm based on
isomorphism checking of two quotient STGs.

In the above three enumerative algorithms, STGs are the underlying data
structure representing state transition systems. It should be noted that the size
of an STG (in terms of the number of vertices and edges) can be exponentially
larger than an FSM in the six-tuple representation (in terms of the number of bits
or Boolean circuit representing the six tuple). Therefore the early enumerative
algorithms may not be effective due to the state explosion problem, namely that
the number of states is exponentially larger than the number of state variables.
In what follows, we introduce symbolic algorithms, which manipulate Boolean
formulae instead of enumerating through transition graphs.

5.2 Implicit Symbolic Algorithms

The previous graph enumerative algorithms are not scalable to large instances.
The reasons are twofold: firstly, representing STGs is memory-space consuming
since every state and transition needs to be represented explicitly; secondly,
enumeration over STGs is time consuming since no parallelism can be exploited,
that is, transitions need to be enumerated separately. These shortcomings are
overcome in the symbolic algorithms to be introduced.

In symbolic algorithms, state transition systems are represented with FSMs
(in the six-tuple representation) or sequential circuits. Enumeration is done
through Boolean manipulations. Therefore, sets of states and transitions can
be manipulated simultaneously.

To design a symbolic algorithm, its underlying data structure must be effec-
tive in representing Boolean formulae and in supporting Boolean manipulations.
ROBDD (or BDD for short) is one such data structure. In the sequel, unless oth-
erwise stated, BDD is meant to be ROBDD. There are several unique properties
of BDDs that make them particularly suitable for verification:

1. Most Boolean functions can be compactly represented by BDDs.
2. Boolean manipulations over BDDs are efficient (polynomial in BDD sizes).
3. BDD representation is canonical. Thus, checking equivalence of two BDDs

(with the same variable ordering) takes constant time.

Despite these nice properties, BDD sizes are in general unpredictable and sensi-
tive to different variable orderings. Due to this intrinsic feature, BDD-based al-
gorithms suffer from non-robustness even though good heuristics exist for finding
good variable orderings. Alltogether the BDD is still one of the most important
data structures for model checking algorithms, and, in the following discussion,
we shall assume them to be the data structure of choice.

27

Algorithm: ForwardStateTraversal

input: initial states I and a transition relation T

output: reachable states R
begin

01 i := 0

02 R(0) := I

03 repeat

04 i := i+ 1

05 R(i) := R(i−1) ∪ Img(R(i−1), T)

06 until R(i) = R(i−1)

07 return R(i)

end

Fig. 9. An algorithm that performs forward reachability analysis for given initial states
and a transition relation.

Algorithm: BackwardStateTraversal

input: final states F and a transition relation T
output: reachable states R
begin

01 i := 0

02 R(0) := F

03 repeat

04 i := i+ 1

05 R(i) := R(i−1) ∪ PreImg(R(i−1), T)

06 until R(i) = R(i−1)

07 return R(i)

end

Fig. 10. An algorithm that performs backward reachability analysis for given target
states and a transition relation.

Reachability Analysis of Product Machine As in the case of explicit graph
algorithms, we may formulate the equivalence checking problem of two FSMs
M1 and M2 as a reachability problem over the product FSM M×. Similarly to
Proposition 1, we have

Proposition 4. Two FSMs M1 = (Q1, Q
0
1, Σ,Ω, T1,λ1) and M2 = (Q2, Q

0
2, Σ,Ω, T2,λ2)

are equivalent if and only if no bad state (q1, q2) ∈ Q1 × Q2 with λ1(σ, q1) 6=
λ2(σ, q2) for some σ ∈ Σ is reachable from the initial states Q0

1 × Q0
2 of the

product FSM.

Since we are concerned with emptiness of the set intersection of the reachable
states and the bad states of the product FSM, reachability analysis over the
product machine forms the computation core of sequential equivalence checking.
Essentially, reachability analysis can be conducted in two directions, forward
[CBM89] and backward [Fil91]. Figures 9 and 10 sketch the procedures for for-
ward and backward reachability analysis, respectively.

28 � � �� �� � � �� �
� �� � � �� �� 	
 � � 	 �

� �� � � �� � � �� �� �� �� � � � � � �
� � � 	 �

Fig. 11. The reached state sets of the product FSM of Figure 3 with forward and
backward state traversals.

Example 6. Figure 11 shows the effective reached state sets of the product
FSM of Figure 3 with forward and backward state traversals. The two con-
stituent FSMs M1 and M2 are equivalent because in forward traversal the reach-
able state sets are disjoint with the bad states {(s0, t1), (s0, t2), (s1, t0), (s1, t3)}
(whose transitions may produce ‘0’ at the output), and similarly in backward
traversal the states reachable from bad states are disjoint with the initial states.
In this example, the forward traversal requires more iterations than the back-
ward traversal. In the symbolic algorithms, the reached state sets are represented
with characteristic functions.

The most sophisticated computation involved in a reachability analysis is the
existential quantification in the image computation (in Step 5 of the algorithms
in Figures 9 and 10). Extensive research efforts have been made in the 1990s
to extend the capability of image computation. One of the most important and
successful techniques is the so-called quantification scheduling [TSL+90], which
determines the order of quantification over a set of variables. The objective is
to make quantifications as local as possible such that the intermediate Boolean
formulae are kept small.

Unlike that of an explicit algorithm over STGs, the complexity measure of
an implicit algorithm is harder to quantify because it heavily depends on BDD
sizes, which are not well predictable. On the other hand, since the procedures of
Figures 9 and 10 in effect perform breadth-first search, the number of iterations
is upper bounded by the forward and backward diameters, respectively. (The
forward diameter is the length of the longest shortest path starting from an
initial state to any state; the backward diameter is the length of the longest
shortest path starting from any state to a target state.) Notice that the forward
and backward diameter may differ substantially. Hence it is sometimes beneficial
to combine both forward and backward analysis in the same procedure.

State Partitioning of Multiplexed Machine An alternative to symbolic
equivalence checking is through the state equivalence formulation [JB03].

29

A decomposition chart of a Boolean function φ : [[vr]] × [[vc]] → B is a two
dimensional truth table with rows indexed by [[vr]] and columns indexed by [[vc]].
We call vr (respectively vc) the free-set (respectively bound-set) variables. To see
an interesting connection between a decomposition chart and a BDD of function
φ, we play a trick on BDD variable ordering. Let the bound-set variables vc be
ordered above the free-set variables vr. Under this variable ordering criterion, we
define the cutset of a BDD to be the set of BDD nodes not controlled by variables
vc with an incoming edge from some BDD node controlled by vc. Consequently,
every valuation c ∈ [[vc]] of the bound-set variables corresponds to a path from
the root node of the BDD to a node in the cutset. Moreover, the function of
this node in the cutset is φ(vr, c), i.e., the function of column c (or called the
column pattern of c) in the decomposition chart. Due to the BDD property that
no two nodes in a BDD possess the same function (since the ordered BDD is
reduced), we know that, for each column pattern in a decomposition chart, there
is a unique corresponding BDD node in the cutset. Thus the number of distinct
column patterns equals the size of the cutset.

Example 7. Consider a Boolean function f : B
4 → B over variables v = (v1, v2, v3, v4)

with

f(v) = v2v4.

Let vc = (v1, v2) and vr = (v3, v4) be the bound-set and free-set variables, re-
spectively. Figure 12 (a) and (b) show the decomposition chart and the BDD of
f . The function of the BDD node controlled by v4 corresponds to the column
pattern of the first and third columns. The function of the zero-terminal node of
the BDD corresponds to the column pattern of the second and fourth columns.
Valuations {(0, 0), (1, 0)} of (v1, v2) (the indices for the first and third columns,
respectively) are in one equivalence class; valuations {(0, 1), (1, 1)} of (v1, v2) (the
indices for the second and fourth columns, respectively) are in the other equiv-
alence class. Observe that valuations {(0, 0), (1, 0)} (respectively {(0, 1), (1, 1)})
correspond to the else-branch (respectively then-branch) of the root of the BDD
of (b). The decomposition chart and the BDD are equivalent representations.

To see how this is useful, suppose we are asked to compute the partition
over [[vc]] induced by the observational output of φ for all [[vr]]. That is, we
need to characterize the equivalence classes among elements in [[vc]] such that
two elements c1, c2 ∈ [[vc]] are in the same equivalence class if and only if
φ(r, c1) = φ(r, c2) for all r ∈ [[vr]]. Equivalently, in the decomposition chart
of φ, two columns c1 and c2 having the same pattern (i.e. φ(r, c1) = φ(r, c2)
for all row index r ∈ [[vr]]) are in the same equivalence class. Characterizing
such equivalence classes can be done implicitly by constructing a BDD with vc

ordered above vr. It is because the paths leading to a node in the cutset of the
BDD correspond to an equivalence class. Hence the cutset and the paths lead-
ing to it encode all the information we need. Essentially, the size of the cutset
equals the number of equivalence classes in the partition. Note that the BDD
structure below the cutset is immaterial, and only the structure above (and in-
cluding) the cutset is important. Therefore, we may possibly abstract the BDD

30

� �
� �
� ��

� �
�

�� � � �
� �� �

� 	 �

�
 � �
� � � �

� � � � � � � �� �� �� �� �
����

����
� �

��� ��
�

� � �
Fig. 12. (a) The decomposition chart of function f(v) = v2v4 with bound-set and
free-set variables {v1, v2} and {v3, v4}, respectively. (b) The BDD of f(v) with the
bound-set variables ordered above the free-set variables. The nodes in the cutset are
shaded. (c) An MTBDD abstraction.

with a multi-terminal binary decision diagram (MTBDD). In the abstraction,
each node in the cutset of the BDD is replaced with a distinct terminal node in
the MTBDD while the structure of the BDD above the cutset is preserved in the
MTBDD. Thereby, the MTBDD can be seen as a function that maps an element
to the index of its corresponding equivalence class. Note that even though the
decomposition chart and the BDD are equivalent representations of equivalence
classes, the latter can be much more succinct than the former.

Example 8. The BDD of Figure 12 (b) can be abstracted with the MTBDD of
(c) when the primary concern is the equivalence classes rather than the charac-
teristics of the equivalence classes. In the abstraction, the zero-terminal node of
(b) is replaced with the one-terminal node in (c), and the cutset node controlled
by v4 of (b) is replaced with the two-terminal node in (c). Notice that the BDD
structure above the cutset of (b) is preserved in the MTBDD (above the terminal
nodes) of (c).

We may need also to compute the partition induced by a set of functions
{φ1(vr,vc), . . . , φn(vr,vc)} instead of just a single function. We may think that
the partition is induced by the column patterns in the decomposition chart
formed by stacking the decomposition charts of φ1, . . . , φn altogether. To apply
the implicit computation using BDDs, we may construct a single hyper-function
Φ : [[η]] × [[vr]] × [[vc]] → B with

Φ(η,vr,vc) =

n
∧

i=1

((η ≡ i) ∧ φi(vr,vc)),

31

� � �

� � � �
� � � �

� � � 	 	 � 	 	� � �� � 	� 	 �� 	 	
����

����
� �

��	 		
	

� � � � 	 � �	 � 		 	 �	 	 	
����

��		
� �

		� 		
�

�
 �� 	� 	� �� �� 	� 	 � 	
� � � �� � � 	� 	 � 	

� � � �

� � � �� � � 	
� 	 � 	

	
Fig. 13. (a) The decomposition chart of function h(η, v) = ηv2v4 ∨ ηv3(v1 ∨ v2) with
bound-set and free-set variables {v1, v2} and {η, v3, v4}, respectively. (b) The BDD of
h(η, v) with the bound-set variables ordered above the free-set variables. The nodes in
the cutset are shaded. (c) An MTBDD abstraction.

where η is an n-valued variable (which can be encoded with a vector of Boolean
variables in constructing the BDD of Φ). In the BDD of Φ, let variables η and
vr be the free set, and variables vc be the bound set. Accordingly, the cutset of
the BDD characterizes all the equivalence classes induces by φ1, . . . , φn.

Example 9. To compute the partition induced by f(v) = v2v4 and g(v) = v3(v1∨
v2) with respect to bound set variables {v1, v2}. We construct the hyper-function
h of f and g as h(η,v) = ηf(v)∨ ηg(v) = ηv2v4 ∨ ηv3(v1 ∨ v2). Let {v1, v2} and
{η, v3, v4} be the bound-set and free-set variables, respectively. Figure 13 shows
the decomposition chart, BDD, and MTBDD of h(η,v) in (a), (b), and (c),
respectively.

To see how the BDD analogue of the decomposition chart is useful in equiv-
alence verification, we first show that it can be exploited to characterize the
state equivalence relation of an FSM. We take advantage of the BDD-based

32

characterization of equivalence classes to compute equivalent states of an FSM
M = ([[s]], Q0, [[x]], Ω, δ,λ). Essentially we need to compute the partition π∗

from π0, where πi denotes the partition induced by ∼i. To compute π0 we build
the BDD of a hyper-function for the output functions λ(x, s) by setting s as
the bound-set variables and all others as the free-set variables. Accordingly, the
cutset C0 of the BDD characterizes π0. The BDD can then be simplified and
abstracted into an MTBDD, which defines a function χ0 : [[s]] → {1, . . . , |C0|}.
For q ∈ [[s]], χ0(q) gives the equivalence class to which state q belongs.

By Definition 6, to compute πk+1 from πk for k ≥ 0, observe that two states
q1, q2 ∈ [[s]] are in the same equivalence class of πk+1 if and only if

1. χk(q1) = χk(q2), and
2. χk(Succσ(q1)) = χk(Succσ(q2)) for all σ ∈ [[x]].

Assuming χk of πk has been derived, we need to compute the equivalence classes
induced by the functions χk(s) and χk(δ(x, s)). Hence, we need to build the BDD
for the hyper-function of χk(s) and χk(δ(x, s)) by setting state variables s as
the only bound-set variables. (Note that the multiple-valued function χk can be
rewritten in terms of a vector of Boolean functions, and thus can be represented
with a BDD through a hyper-function construction. Also, χk(δ(x, s)) can be
obtained through the BDD composition operation by substituting the variable
s′i of χk(s′) with the corresponding transition function δi(x, s).) Again, the cut-
set Ck+1 of the BDD gives us the equivalence classes of πk+1, from which we
may obtain the MTBDD of χk+1. The iteration terminates when the number of
equivalence classes does not increase, i.e., |Ck+1| = |Ck|. Upon termination, the
MTBDD of χ∗ characterizes the partition π∗.

For checking the equivalence of two FSMs M1 and M2 (as in the development
of the corresponding explicit algorithm), the previous procedure can be extended
to characterize the state equivalence of the multiplexed FSMs M⊎ of M1 and
M2. (Note that the auxiliary variable α is treated as a state variable and thus
is considered as a bound-set variable.) Upon termination, we check if the initial
states of M1 and M2 are in the same equivalence class. By Proposition 3,
M1 and M2 are equivalent if and only if their initial states are in the same
equivalence class. A detailed exposition can be found in [JB03].

Example 10. Figure 14 shows the state space partitioning of the multiplexed
FSM of Figure 4. The two constituent FSMs M1 and M2 are equivalent be-
cause their initial states s0 and t0 are in the same equivalence class in the final
partition π1. In the symbolic algorithm, the equivalence classes of a partition
are represented with a BDD.

In the computation of state equivalence, since every equivalence class is rep-
resented with a BDD node, the verification capability of the approach may be
limited. In practice, the approach may handle designs with up to millions of
equivalence classes. Hence, reducing the peak amount of equivalence classes may
extend the verification capability and improve the efficiency of the algorithm.
An effective way to do so is by divide-and-conquer and handling separately the

33

�
� � � �� � � � � �� � � � � �� � � � � �� �

� �
Fig. 14. The state space partitioning of the multiplexed FSM of Figure 4.

partition induced by every output function. In fact, two FSMs are equivalent
if and only if their initial states are in one equivalence class for the partition
induced by every output function. Actually, the number of equivalence classes
induced by all output functions may be exponentially larger than the one in-
duced by any single function. (This reduction can be considered as one instance
of the so-called cone-of-influence reduction [CGP99].) Another way to reduce the
number of equivalence classes is to restrict state partitioning to the subspace of
reachable states. When the (exact or over-approximated) reachable state sets of
M1 and M2 are known, the state equivalence can be characterized within these
subspaces by the BDD constrain operator [CM90,JB03], which removes from
consideration useless equivalence classes. (Note that, unlike verification in the
disjoint union space, verification in the product space may not benefit much from
reachability information of the individual FSMs. Moreover, reachability analysis
on individual FSMs may be much easier than analysis on their product FSM.)

Whereas reachability analysis of a product FSM is usually unpredictable, ver-
ification in the disjoint union space may be more robust. After all, two equivalent
FSMs must have the same number of equivalence classes in their respective reach-
able state spaces. On the other hand, one limitation of the above BDD-based
characterization of equivalence classes is that it is applicable only to partitions
induced by functions rather than by relations; in comparison, verification based
on reachability analysis is more flexible and can handle nondeterministic transi-
tions straightforwardly.

Connections between Reachability and Equivalence There is an inter-
esting connection between reachable state pairs and equivalent state pairs.

Assume M1 = (Q1, Q
0
1, Σ1, Ω1, δ1,λ1) and M2 = (Q2, Q

0
2, Σ2, Ω2, δ2,λ2)

are the FSMs to be verified. Let M× and M⊎ be their product and multiplexed
FSMs, respectively. In forward reachability analysis of M×, any reached state
set R(i) ⊆ Q1 ×Q2 in Figure 9 can be seen as an equivalence relation between
Q1 and Q2 that must be maintained for the two FSMs to be equivalent. Note
that forward reachability analysis of M× characterizes equivalent state pairs

34

only reachable from the initial states of M× (but not all equivalent state pairs
in Q1 ×Q2).

In contrast, in backward reachability analysis of M×, the complement of
R(i) ⊆ Q1×Q2 in Figure 10 is equal to ∼i⊆ (Q1⊎Q2)×(Q1⊎Q2) of M⊎ except
for ignoring the equivalence among individual FSMs, that is,

(Q1 ×Q2)\R
(i) = ∼i \{Q1 ×Q1 ∪Q2 ×Q2}.

Example 11. Consider the reached state set with backward state traversal in
Figure 11

R∗ = (s0, t1), (s0, t2), (s1, t0), (s1, t3),

and the state space partition of the related multiplexed FSM in Figure 14

∼∗= (s0, t0), (s0, t3), (s1, t1), (s1, t2), (t0, t3)(t1, t2),

it holds that (Q1 ×Q2)\R⋆ = ∼⋆ \{Q1 ×Q1 ∪Q2 ×Q2}.

Note that backward reachability analysis of M× characterizes all equivalent
state pairs in Q1 × Q2 whereas state partitioning of M⊎ considers all equiva-
lent state pairs in Q1 ×Q2 ∪Q1 ×Q1 ∪Q2 ×Q2. Consequently, the number of
iterations needed in state partitioning of M⊎ may be greater than that in back-
ward reachability analysis of M×. Nevertheless, when restricted to the reachable
subspace of M1 and M2, state partitioning of M⊎ terminates at the same iter-
ation as backward reachability analysis of M× since the unreachable state space
is not partitioned. In fact, backward reachability analysis can be seen as state
space partitioning over the product space, in contrast to state space partitioning
over the disjoint union space. (Notice that R(i) in forward reachability analysis
does not follow k-step state equivalence so the number of iterations may not be
comparable with backward reachability analysis.)

6 Safety Property Checking through Time-frame

Expansion

In Section 5, we see that sequential equivalence checking can be formulated
as reachability analysis, where we want to assert that the underlying product
machine always outputs true under any state reachable from the initial state set.
It is in fact an instance of safety property checking, where temporal properties
of a state transition system can be checked through reachability analysis. In this
section, we broaden our discussion a bit and speak of safety property checking.
The discussion is in turn applicable to sequential equivalence checking.

The capacity of ROBDD-based verification algorithms is typically limited to
designs with at most hundreds of registers. This limitation is due to the memory
explosion problem because BDDs may not represent some characteristic func-
tions efficiently or may grow too large due to quantifier elimination (e.g., in image
computation), even though dynamic variable reordering [Rud93], quantification
scheduling, and some other techniques are helpful.

35

In addition to BDDs, satisfiability (SAT) solving over Boolean formulae in
the conjunctive normal form (CNF) is another core engine for Boolean reason-
ing. SAT solvers based on the the DPLL algorithm (Davis-Putnam-Logemann-
Loveland) [DP60,DLL62] were recently engineered into a very effective technol-
ogy, due to breakthroughs including conflict-based non-chronological backtrack-
ing [MSS99], two watched literals [Zha97], fast Boolean constraint propagation
[MMZM01], etc. As a consequence, more and more verification problems are
reformulated as SAT solving to exploit the capability of SAT solvers.

In SAT solving, we are asked if a CNF Boolean formula φ(x) is satisfiable
(true under some valuation, or interpretation, of the Boolean variables x, i.e.,
∃x.φ(x)). Therefore, a SAT solver semantically performs existential quantifica-
tion. On the other hand, a SAT solver can be exploited to test if a Boolean for-
mula φ(x) is valid (true under every valuation of x, i.e., ∀x.φ(x)) by testing the
satisfiability of the complement ¬φ(x). That is, φ(x) is valid if and only if ¬φ(x)
is unsatisfiable. However, the main problem of validity checking is whether the
complement can be represented efficiently because a SAT solver expects ¬φ(x)
to be in CNF. In general, complementing a CNF into another CNF may suffer
from an exponential blow-up in the Boolean formula size. Fortunately, in hard-
ware verification, the problem with the complement can sometimes be overcome.
For instance, to test if the output of a circuit always produces 1 regardless of
the valuations of the input variables, we may add an inverter at the output. By
translating the new circuit into a CNF, we may apply SAT solving. The original
circuit always produces 1 if and only if the CNF of the new circuit is unsatisfi-
able. Translating a circuit into a CNF can be done in polynomial time, and the
size of the resultant CNF is polynomial in the size of the circuit [PG86]. (The
polynomial conversion is possible due to the introduction of new local variables.
Existentially quantifying out these variables results in an equivalent Boolean
formula depending only on the original variables.) Nonetheless, image compu-
tation using SAT is less straightforward than using BDDs. In fact, a real hard
task for SAT solving is to solve quantified Boolean formulae alternating existen-
tial and universal quantifications: solving quantified Boolean formulae (QBFs)
is PSPACE-complete [SM73], whereas SAT [Coo71] is NP-complete. After all,
SAT solvers are good at spotting one satisfying valuation instead of all satisfying
valuations.

In contrast to BDD-based algorithms, SAT-based verification algorithms are
less memory hungry. However, long run time may be the main bottleneck in
SAT solving. In hardware verification, SAT may be preferable to BDDs in that
a verification task is less likely to abort due to memory limitations, and it catches
more design bugs as time flows, so it is more suitable in hardware debugging than
BDDs. However, because SAT is not effective in dealing with quantified Boolean
formulae (QBFs), SAT is not as applicable to general model checking as BDDs.
To take full advantage of the strengths of SAT solving, the approach to model
checking needs to be modified as discussed below.

36

6.1 Bounded Model Checking

To verify whether a state transition system respects a temporal safety property,
it can be translated into a set of QBFs. (In fact, any PSPACE-complete problem
can be converted into QBF solving.) For instance, the termination condition of a
reachability analysis of Figure 9 or 10 can be expressed with a QBF. Essentially,
R(i+1) ⇒ R(i) (equivalent to the termination check R(i+1) = R(i)) is valid if
and only if R(i+1) ∧ ¬R(i), or equivalently Img(R(i), T)∧ ¬R(i), is unsatisfiable.
Recursively reexpressing R(i) with R(i−1) ∨ Img(R(i−1), T) yields a QBF, where
existential and universal quantifications alternate due to the complement of R(i)

and the existential quantification in image computation. However, notice that
SAT solvers are not good at solving QBFs.

Example 12. Given the initial state set I and the transition relation T , the
termination check R(2) = R(1) can be translated to the QBF

∀s0, s1, s2, ∃t0.[(I(s0) ∧ T (s0, s1) ∧ T (s1, s2)) ⇒ (I(s2) ∨ (I(t0) ∧ T (t0, s2)))],

where T (s, s′) is an abbreviation for ∃x.T (x, s, s′) (or, alternatively, it results
from considering input variables x as part of the states variables). The QBF
asserts that for all states s0, s1, s2, if s0 is an initial state, and there are tran-
sitions respectively from s0 to s1 and from s1 to s2, then either s2 is an initial
state or s2 can be reached from an initial state t0. In other words, if a state is
reached at the second iteration, it must be an initial state or have been reached
at the first iteration. That is, no new state is reached at the second iteration.

To take full advantage of SAT solving, we had better restrict the formu-
lation to quantifier-free Boolean formulae. One possible solution is to ignore
the termination condition in reachability analysis, and to ask if the considered
transition system satisfies the property under any execution of input sequences
whose length is upper-bounded by k. By sacrificing “completeness,” instead of
QBF solving one will be reduced to solving quantifier-free Boolean formulae, as
we will see shortly. This bounded-length model checking is known as bounded
model checking (BMC) [BCCZ99]. Note that, for finite-state systems, BMC is
indeed complete, however, under a rather useless upper bound on k, e.g., the
number of states of the transition system. Although BMC is in theory complete
for finite state systems, in almost all practical cases it runs out of computa-
tional resources far before the completeness bound is reached. Therefore, it is
considered incomplete in practice.

BMC is very similar to sequential ATPG, developed earlier in the testing
community, with some minor difference in their data structures. Let I, T , and P
be the initial state set, transition relation, and temporal property, respectively.
(In the context of sequential equivalence checking, the temporal property P (s) to
be verified is λ×(s) ≡ 1.) BMC checks the satisfiability of the following Boolean
formulae in order

Bmc0 : I(s0) ∧ ¬P (s0),

Bmc1 : I(s0) ∧ T (s0, s1) ∧ ¬P (s1),

37

...

Bmck : I(s0) ∧ T (s0, s1) ∧ · · · ∧ T (sk−1, sk) ∧ ¬P (sk),

where the state variables are annotated with time indices in superscript. (Here
we treat primary input variables as part of the state variables.) The procedure
either stops at a satisfiable Boolean formula Bmci or proceeds otherwise with
a new formula Bmci+1. Boolean formula Bmci is satisfiable if the temporal
property P is violated and a counterexample of length i is found. Consequently,
BMC can be used to locate bugs under some length bound constrained mainly
by computational resources.

To “visualize” BMC with circuits, the feedback loop of a sequential circuit is
eliminated and replaced with a series of concatenated replicas of the combina-
tional core of the circuit. A sequential circuit is expanded into a combinational
one with several time frames. Thereby, BMC converts a sequential verification
problem into a combinational one (which can be solved using SAT straightfor-
wardly) through the so-called time-frame expansion. In effect, the corresponding
STG of the original circuit is unwound into a tree through the expansion. Thus
states at level i of the tree correspond to states at the i-th time frame reached
from the initial states; BMC tries to locate a state at level i that violates the
property P under verification.

Example 13. Figure 15 (a) shows the time-frame expansion of the FSM M1 of
Figure 2. When M1 is converted to its time-frame expansion, the corresponding
STG is unwound as shown in Figure 15 (b). Since circuits can be efficiently
converted to CNFs as mentioned earlier, BMC using SAT applies.

Figure 16 sketches the procedure of BMC. Let D be the target states that vi-
olate property P , i.e., the ¬P -states. The procedure checks if there is some target
state reachable from the initial states I under a transition path of length i. Be-
cause the Boolean formulae of two consecutive iterations Bmci and Bmci+1 are
almost the same, intuitively many of the learned clauses induced by the conflict
analysis in Bmci are applicable for solving Bmci+1. Therefore, one important
issue for BMC to be effective is how to efficiently reuse some of the learned
clauses from the previous iterations and remove those that become invalid in
the current iteration. It brings up the notion of incremental SAT solving. More
details can be found in, e.g., [WKS01,ES03].

6.2 Unbounded Model Checking

The main weakness of BMC is the termination criterion: it is unknown how many
time frames are needed to conclude for the absence of bugs. The length of time-
frame expansion is mostly set by the limit of computational resources. Shortly
after the introduction of BMC, several techniques, e.g. [SSS00,McM02,McM03],
were developed to cope with the termination problem in order to guarantee auto-
matic termination of SAT-based model checking whenever a proof is established,

38 � ��

� � � �� � �� � �� � � � � �	 �
� �

� � � � � �� � � � � �� � � �� � �� � �� � � � � � � �

 � � �
��

� � � � � � � � � � � � � � � � � � �

� � � � � � � � �

 � !

 " !

� �� # � � � �� � $� $% & ' # (

Fig. 15. (a) Time-frame expansion of the FSM M1 of Figure 2. (b) The effective
unwinding of the STG G1.

39

BoundedModelChecking

input: transition relation T , initial states I , destination states D
output: Yes, if reachable; No, otherwise
begin

01 i := 0
02 repeat

03 Bmci := I(s0) ∧ T (s0, s1) ∧ · · · ∧ T (si−1, si) ∧D(si)
04 if Bmci is satisfiable
05 return Yes (with a satisfying valuation)
06 i := i+ 1
07 until false

end

Fig. 16. The procedure of bounded model checking.

just like in BDD-based model checking. Removing the boundedness limitation
of BMC yields the so-called unbounded model checking (UMC).

Of the techniques reported in [SSS00,McM02,McM03], the first approach
[SSS00] will be introduced from a different perspective in Section 7.3. The sec-
ond method [McM02] performs quantifier elimination by the observation that
universal quantification in CNF is trivial, and dually is so existential quantifica-
tion in DNF (disjunctive normal form).

Example 14. The QBF ∀b.[(a∨ b∨¬c)(a∨¬b∨d)] equals the quantifier-free for-
mula (a∨¬c)(a∨d) by simply removing the variables to be universally quantified
from the original CNF expression.

By converting Boolean formulae back-and-forth between CNF and DNF, quan-
tifications in model checking can be achieved. Not surprisingly, the conversion
risks exponential blow-up in the Boolean formulae. Below we focus on the third
technique, introduced by McMillan [McM03], a beautiful application of the fa-
mous Craig Interpolation Theorem [Cra57].

Theorem 3 (Craig 57). Let A and B be two Boolean formulae with A ∧ B
unsatisfiable. Then there exists a Boolean formula A′, called the interpolant for
A and B, such that

1. A⇒ A′,
2. A′ ∧B is unsatisfiable, and
3. A′ only refers to the common variables of A and B.

Note that, while Craig’s interpolation theorem holds for first-order logic, in our
application we use it in the restricted case of propositional logic.

Kraj́ıček [Kra97] and Pudlák [Pud97] showed that an interpolant can be
generated from a resolution refutation [Rob65] of an unsatisfiable CNF with
complexity linear in the proof. (Interested readers are referred to Pudlák [Pud97]
for a detailed exposition; a different but equivalent construct can be found in
[McM03].) In fact, modern DPLL-style SAT solvers (such as GRASP [MSS99],
Chaff [MMZM01], BerkMin [GN02], etc.) can be exploited to generate resolution

40

UnboundedModelChecking

input: transition relation T , initial states I , destination states D
output: Yes, if reachable; No, otherwise
begin

01 if I ∧D is satisfiable
02 return Yes (with a satisfying valuation)
03 i := 0
04 repeat

05 R := I(s−1)
06 A := R(s−1) ∧ T (s−1, s0)
07 B := T (s0, s1) ∧ · · · ∧ T (si−1, si) ∧ (D(s0) ∨ · · · ∨D(si))
08 if A ∧B is satisfiable
09 return Yes (with a satisfying valuation)
10 repeat

11 generate interpolant A′(s0) for A and B
12 if A′(s0) ⇒ R(s0)
13 return No
14 R := R(s−1) ∨ A′(s−1)
15 A := R(s−1) ∧ T (s−1, s0)
16 until A ∧B is satisfiable
17 i := i+ 1
18 until false

end

Fig. 17. An algorithm that performs unbounded model checking based on interpola-
tion.

refutations for unsatisfiable CNFs, and thus interpolants (with respect to pre-
specified clause sets A and B). In what follows, we suppose that SAT solvers
capable of generating interpolants are available.

Figure 17 shows the algorithm of interpolation-based unbounded model check-
ing, where all Boolean formulae are assumed to be in CNF. Given the transition
relation T , it checks if the destination states D are reachable from the initial
states I. Variable vectors in parentheses are instantiated with time indices in su-
perscript like in BMC. Observe that the outer loop of the algorithm is the same
essentially as the BMC steps of Figure 16, whereas the inner loop performs
over-approximated reachability analysis.

To understand the over-approximated image computation in the inner loop,
we sketch the main idea. Recall that reachability analysis looks for the fixed point
R∗ = ∨iR

(i), where R(i) = R(i−1) ∨ Img(R(i−1), T) and R(0) = I, the initial
state set. A destination state set D is reachable from I if and only if R∗ ∧D 6=
false. Replacing the exact image computation Img with an over-approximation
image operator Img ′ (i.e., Img(C, T) ⇒ Img ′(C, T) for any state set C and
transition relation T) results in an over-approximated reachability computation.
To preserve the accuracy of such approximated reachability analysis, we define
the adequacy of an image over-approximation as follows.

41

Definition 11 (Adequacy). Given a state transition system with transition
relation T , an over-approximation R′ of the image of a state set C, i.e. R′ ⊇
Img(C, T), is adequate with respect to the destination states D, when, if C
cannot reach D, R′ cannot reach D.

So if an over-approximation image operator Img ′ is adequate with respect to D,

then D is reachable from I if and only if R′
∗ ∧D 6= false, where R′

∗
= ∨iR

′(i)

with R′
(i)

= R′
(i−1) ∨ Img ′(R′

(i−1)
, T) and R′

(0)
= I. The question is how to

find an adequate Img ′ operator. As a step to our goal, we define first an image
operator that is adequate only for k steps.

Definition 12 (k-adequacy). Given a state transition system with transition
relation T , an over-approximation R′ of the image of a state set C, i.e. R′ ⊇
Img(C, T), is k-adequate with respect to the destination states D when, if C
cannot reach D, R′ cannot reach D in k or fewer steps.

We will argue that in the k-th iteration of the outer loop of the UMC algorithm
in Figure 17, Step 11 is a k-adequate image operation. (Notice that, unlike exact
image computation, no existential quantification is needed in the computation.)
In addition, if k is such that all states reaching D are within distance k, k-
adequacy becomes general adequacy, because the over-approximated reachable
states computed from I under such a k-adequate image operator are disjoint from
the states reaching D. The conclusion is that even under such an approximation,
reachability analysis with respect to I and D returns a correct answer, within a
finite number of steps.

Figure 18 illustrates the computation of a few steps of the inner loop of
the interpolation-based UMC at the k-th iteration of the outer loop, where
R′(s−1) = I(s−1)∨A′(s−1), R′′(s−1) = R′(s−1)∨A′′(s−1), and T k(s0, s1, . . . , sk)
is a shorthand for T (s0, s1)∧T (s1, s2)∧· · ·∧T (sk−1, sk). By Theorem 3, for un-
satisfiable A ∧B with A = R(s−1) ∧ T (s−1, s0) and B = T (s0, s1)∧ T (s1, s2) ∧
· · · ∧ T (sk−1, sk) ∧ (D(s0) ∨ · · · ∨ D(sk)), we know that A′ depends only on
variables s0 (which are common to A and B), that A ⇒ A′ implies A′ is an
over-approximation of Img(R, T), and that the unsatisfiability of A′ ∧B implies
states A′ cannot reach D within k steps. Consequently, A′ is a k-adequate over-
approximation of the image of R. (Note that Boolean formula B changes only
outside the inner loop so k-adequacy is maintained for the image computations
at the k-th iteration of the outer loop.) As an example, R′ (respectively R′′) of
Figure 18 is essentially a k-adequate over-approximation of R(1) (respectively
R(2)) in the exact forward reachability analysis of Figure 9. The inner loop of
Figure 17 iterates until the over-approximated reached states R can reach the
destination states D in k+ 1 transitions, that is, A∧B is satisfiable at Step 16.
Since R is an over-approximated reached state set, the satisfying valuation of
Step 16 may be a spurious counter-example. Thus, another iteration of the outer
loop is needed to strengthen the k-adequacy of image computation by increas-
ing i. It is worth mentioning that, if in the i-th iteration of the outer loop of
Figure 17 the inner loop is executed j times, then for sure Step 9 will not be ex-
ecuted until the (i+ j)-th iteration of the outer loop because it implies I cannot

42

I(s−1) ∧ T (s−1
, s

0)
| {z }

∧ T
k(s0

, s
1
, . . . , s

k) ∧ (D(s0) ∨ · · · ∨D(sk))
| {z }

A B

?

A′(s0)

9

R
′(s−1) ∧ T (s−1

, s
0)

| {z }
∧ T

k(s0
, s

1
, . . . , s

k) ∧ (D(s0) ∨ · · · ∨D(sk))
| {z }

A B

?

A′′(s0)

9

R
′′(s−1) ∧ T (s−1

, s
0)

| {z }
∧ T

k(s0
, s

1
, . . . , s

k) ∧ (D(s0) ∨ · · · ∨D(sk))
| {z }

A B

...

Fig. 18. The image over-approximations A′, A′′, . . . computed by the inner loop
(Steps 10–16) at the k-th iteration of the outer loop of the UMC procedure of Fig-
ure 17.

reach D in (i+ j) transitions. Therefore, Step 17 can be placed alternatively in
the inner loop between Steps 15 and 16 of the procedure.

We comment on Steps 7, 12, and 14 of Figure 17. For Step 7, translating the
Boolean formula into CNF may be difficult due to the disjunctions. Nevertheless,
the aforementioned polynomial-size translation from circuit to CNF [PG86] can
be applied, provided that the circuit representing the characteristic function of
D is available. Note that the disjunctions of D(si) with D(s0), . . . , D(si−1) are
necessary for k-adequacy to hold for the over-approximated image computation.
(In BMC, these disjunctions are redundant in Boolean formula Bmci because in
checking Bmci we assume Bmcj is unsatisfiable for any j = 0, . . . , i.) For Step12,
checking the validity of A′ ⇒ R is identical to checking the unsatisfiability of
A′ ∧ ¬R. Since the interpolant A′ is in circuit representation when generated
from a refutation [Pud97,McM03] and the circuit for the characteristic function
of R can be built, the circuit representing A′ ∧ ¬R can be built as well and
translated into CNF in polynomial time for a SAT solver to solve. For Step 14,
similar to Step 7, the disjunction of A′ and R can be translated into CNF by
the circuit-to-CNF conversion from the circuits representing the characteristic
functions of A′ and R.

The UMC procedure of Figure 17 terminates at Step 2, 9 or 13. At Step 2,
it returns Yes because the initial states I and destination states D intersect. At
Step 9, it returns Yes because at least an initial state reaches the destination

43

set in i + 1 transitions. At Step 13, it returns No because there is no newly
reached state in the over-approximated image A′ and thus the reached state set
R is closed, and moreover it is disjoint from D.

The number i of iterations of the outer loop of Figure 17 is bounded from
above by the backward diameter from destination states D (i.e. the length of
the longest shortest path that leads to a state in D). The reason is that, when i
is larger than or equal to this diameter, Boolean formula B is satisfiable under
any state reaching D, that is, B contains all the states reaching D. As long as I
cannot reach D, the computed interpolant in every inner-loop iteration must be
disjoint from B and thus is adequate. As the over-approximated reached state
set R grows monotonically, the computation must reach a fixed point and the
algorithm terminates eventually at Step 13. The upper bound defined by the
backward diameter is tight and is the same as the number of iterations needed
in BDD-based backward reachability analysis. However, unlike BDD-based ex-
act reachability analysis, the interpolation-based UMC may terminate in fewer
iterations than this bound due to the over-approximated image computation.

In BMC, the proof of a satisfiable Bmci is useful in providing a trace that
activates a design error. On the contrary, the proof of an unsatisfiable Bmci is
rather useless and is a waste in some sense. In comparison, the interpolation-
based UMC extracts useful information out of the refutation through the Craig
Interpolation Theorem. On the other hand, when BDD-based and SAT-based
model checking approaches are compared, it is observed that SAT-based methods
only generate proofs relevant to the properties to be checked, and thus are often
more effective than BDD-based methods, which may generate irrelevant proofs
as well as relevant ones.

7 Bridging the Gap between Combinational and

Sequential Equivalence Checking

The aforementioned verification methods of Sections 5 and 6 make no assump-
tions about structural similarities between circuits to be compared. They are
applicable to equivalence verification of designs with completely different imple-
mentations. However, it is this generality that limits their capability and scala-
bility to verify large designs. The generality is often unnecessary because in most
cases the designs being compared possess structural similarities to some extent.
Although the similarities may not be sufficient to demonstrate the equivalence
between two designs, their identification may substantially simplify verification
tasks. As an extreme example, when the relation between state encodings of the
two designs to be compared is known, the equivalence verification becomes pure
combinational checking, and the complexity reduces from a PSPACE-complete
problem (sequential equivalence checking) to a coNP-complete problem (combi-
national equivalence checking). This dramatic complexity reduction motivates
the exploitation of circuit similarities in equivalence verification.

To be precise, we define equivalent signals of sequential circuits as a metric
for structural similarities, where the term “signal” means a wire in a circuit.

44

Definition 13 (Signal Equivalence). Given a circuit implementation of an
FSM, two signals in the circuit are equivalent (i.e. they are corresponding sig-
nals) if their values are all identical or all complementary to each other in any
execution of the FSM.

In fact, this notion of correspondence can be extended straightforwardly to sig-
nals between two different circuits. For instance, one may construct a product
machine of the two circuits and seek equivalent signals inside it.

Given two sequential circuits, especially when one is optimized from the other
through logic synthesis tools, their circuit structures, though may look different,
may possess a large amount of equivalent signals. The identification of these
equivalent signals may not be trivial. The labels (names) of signals may have
been changed or lost during logic optimization, for instance, due to the creation
of new signals, elimination of existing signals, etc. There is little hope to obtain
corresponding signals simply by name matching. Moreover, even signals with the
same name are not necessarily equivalent and they need to be proved as well.
Identifying corresponding signals without relying on pure name matching has
its practical importance. In this section, we introduce some effective techniques
that identify circuit similarities for sequential circuits without relying on name
matching.

7.1 Inductive Register Correspondence

Among signals whose correspondences are to be identified, signals at register
outputs (state variables) are the most important to demonstrate the equivalence
between two sequential circuits. We call the equivalence of signals at register
outputs as the register correspondence. It can be envisaged that, if two sequen-
tial circuits differ only combinationally, there exists a register correspondence
between these two circuits, that is, every state transition function of one circuit
has an equivalent transition function of the other. If the register correspondence
is established, then the underlying sequential equivalence checking problem is
reduced to a combinational one.

By Definition 13, to compute equivalent signals requires the knowledge of
the reachable state set of an FSM. As reachability analysis is hard, we turn
to seek approximation approaches to the identification of equivalent signals. In
fact, induction can be used as an effective way of detecting register correspon-
dences [Fil92,vEJ95]. Although the characterization is incomplete, it captures
an interesting class of register correspondences.

Definition 14 (Inductive Register Correspondence). An inductive regis-
ter correspondence of an FSM M = ([[s]], I, [[x]], Ω, δ,λ) is an equivalence rela-

tion
rc
= ⊆ {s} × {s} over the state variables which satisfies, for all valuations of

x, s,

Base case : I (s) ⇒ Rrc
=
(s), and (6)

Inductive case : Rrc
=
(s) ⇒ Rrc

=
(δ(x, s)), (7)

45

where
Rrc

=
(s) =

∧

(si,sj)∈
rc
=

si ≡ sj .

It can be checked that, for state variables si and sj satisfying the above con-
ditions, their valuations are always identical throughout the execution of the
underlying FSM.

Notice that the equivalence relations
rc
= satisfying 6 and 7 may not be unique.

However, there exists a unique maximum inductive register correspondence. In
fact, the equivalence relations satisfying Equations (6) and (7) form a bounded
partially ordered set (or poset) P = (Z,⊆), where Z is the set of equivalence
relations satisfying Equations (6) and (7). Since relation ⊆ is a partial order
(satisfying reflexivity, antisymmetry, and transitivity) on Z, P = (Z,⊆) is a
poset. In particular, the empty set ∅ is a lower bound for Z; it corresponds to an
equivalence relation with no equivalent state variables. On the other hand, there
is an upper bound for Z. This is because, if

rc
=1 and

rc
=2 are two elements in Z,

then
rc
=1 ∪

rc
=2 forms another valid inductive register correspondence and is in

Z as well. It certifies that a (locally) maximal inductive register correspondence
is also a (globally) maximum one.

The signal correspondence of Definition 14 can be slightly relaxed by further
considering complementary state variables si and sj satisfying Equations (6) and
(7) with

Rrc
=
(s) =

∧

(si,sj)∈
rc
=

si ≡ sj .

Since the valuations of si and sj are always complementary to each other in the
execution of the underlying FSM, they can be seen as corresponding signals as
well.

The procedure sketched in Figure 19 computes the maximum inductive reg-
ister correspondence, where the function call InitialValue(s) obtains the initial
value of state variable s. Here we assume that the initial value of any register is
a fixed deterministic value. That is, there is a single initial state in the underly-
ing FSM. (Note that, for a state variable with nondeterministic initial values, it
may not have equivalent state variables by Definition 14.) For the sake of sim-
plicity, the computed register correspondence does not include state variables
with complementary values although this extension can be added easily. On the
other hand, as mentioned earlier, the procedure can be used to compute the
register correspondence between two sequential circuits because it can take the
product machine of the two circuits as its input.

Example 15. Consider the FSM M = (B4, (0, 0, 0, 0) ∈ B
4,B, Ω, δ,λ), where

δ = (δ1, . . . , δ4) with

δ1(x, s) = x s1 ∨ x s3,

δ2(x, s) = x s2 ∨ x s3 ∨ (s1 ⊕ s2),

δ3(x, s) = x s3 ∨ x s1 s3, and

δ4(x, s) = (x s4 ∨ x s2 s4)(s2 ∨ s3).

46

ComputeInductiveRegisterCorrespondence

input: a sequential circuit M with transition functions δ and
input and state variables x and s, respectively

output: the inductive register correspondence of M
begin

01 i := 0

02
rc
=

(i)
:= {(sp, sq) | InitialValue(sp) = InitialValue(sq)}

03 repeat

04 i := i+ 1
05 R :=

V

(sp,sq)∈
rc
=

(i−1) (sp ≡ sq)

06
rc
=

(i)
:= {(sp, sq) ∈

rc
=

(i−1)
| ∀x, s.[R(s) ⇒ (δp(x, s) ≡ δq(x, s))]}

07 until
rc
=

(i)
=

rc
=

(i−1)

08 return
rc
=

(i)

end

Fig. 19. An algorithm that characterizes the inductive register correspondence for a
given sequential circuit.

The inductive register correspondence of M can be identified through the proce-
dure of Figure 19. It can be checked that the register correspondences at different
iterations are

rc
=

(0)
= {(s1, s2), (s1, s3), (s1, s4), (s2, s3), (s2, s4), (s3, s4)},

rc
=

(1)
= {(s1, s2)}, and

rc
=

(2)
= {(s1, s2)}.

Thus, the procedure terminates in two iterations and identifies s1 and s2 as cor-
responding state variables. Since s1 and s2 have the same valuations throughout
the execution of M, they are equivalent signals.

Theorem 4. The procedure of Figure 19 terminates and returns the maximum
inductive register correspondence.

Proof. The termination is easily seen because
rc
=

(i)
is initially finite and decreases

monotonically until
rc
=

(i)
equals

rc
=

(i−1)
with cardinality no less than zero.

The computed register correspondence upon termination follows Definition 14
because Steps 1 and 6 of the procedure in Figure 19 are satisfied. On the other
hand, we show that the returned register correspondence is maximum. Let S be
the set of state variables. Then L = (P(S × S), ⊆, S × S, ∅) forms a com-
plete lattice since relation ⊆ is a partial order on P(S × S) (the power set of
S × S), and S × S and ∅ are the greatest and least elements, respectively, of
P(S×S). Also, observe that Step 6 in the procedure of Figure 19 defines a map-
ping f : (S × S) → (S × S), which is monotone, that is, for all a, b ∈ P(S × S),
a ⊆ b implies f(a) ⊆ f(b). Since the procedure iteratively removes inequiv-
alent state-variable pairs through f , it computes a greatest fixed point by the
Knaster-Tarski Theorem [Tar55].

47

The procedure ComputeInductiveRegisterCorrespondence is effective and scal-
able to large designs, e.g, with tens of thousands of registers. The main reason
of this practicality is that an equivalence relation among state variables, instead
of states, are computed. As a result, the state explosion problem does not occur.
However, it should be noted that not all register correspondences can be charac-
terized inductively. In fact, the relation

rc
= can be seen as an over-approximation

of the reachable state set R of the underlying sequential circuit M, i.e.,
rc
= ⊇ R,

because
rc
= must be an invariant over R. The procedure in Figure 19 can be seen

as a kind of reachability analysis as the inductive register correspondence
rc
=

(i)

at the ith iteration is gradually refined, i.e.,
rc
=

(i)
⊇

rc
=

(i+1)
, and approximates R

more and more accurately.

Example 16. Continue Example 15. State variables s3 and s4 are, in fact, equiv-
alent signals by Definition 13. However, they cannot be detected by the induc-
tive procedure of Figure 19. The reason is that the valuations of s3 and s4
are the same in the reachable state space, with characteristic function R(s) =
s1 s2 s3 s4 ∨ s1 s2 s3 s4 ∨ s1 s2 s3 s4, of M. However, it is not true in the over-
approximated state space, with characteristic function Rrc

=
(s) = s1 s2 ∨ s1 s2,

because δ3 and δ4 are not equivalent under Rrc
=
(s).

The algorithm of inductive register correspondence can be applied for se-
quential equivalence checking of two FSMs M1 and M2 by constructing their
product machine M× and analyzing register correspondence on M×. It checks
if under the computed over-approximated reachable state set Rrc

=
the output of

M× always produces constant one, i.e., for all valuations of x, s

Rrc
=
(s) ⇒ λ×(x, s) ≡ 1. (8)

If the above formula is valid, then M1 and M2 are indeed equivalent. Otherwise,
M1 and M2 may or may not be equivalent. It yields the so-called false negative,
which means a negative answer may be problematic. Therefore, inductive register
correspondence is incomplete for sequential equivalence checking. As a matter of
fact, its proving power is very limited and only complete for special occasions,
e.g., the FSMs under comparison are transformed combinationally.

Quasi-inductive Functional Dependency In inductive register correspon-
dence

rc
=, every two state variables si and sj are related with the identity func-

tion or the complement of the identity function. That is, si ≡ sj or si ≡ sj .
In fact, more general functional dependencies [JB04] can be considered, where
a state variable si can be expressed as a function θ over other state variables
s1, . . . , si−1, ss+1, . . . , sn, i.e., si = θ(s1, . . . , si−1, ss+1, . . . , sn). Similar to induc-
tive register correspondence, functional dependencies may be characterized in an
inductive manner. However, the computation may risk non-termination unless
some artificial conditions are further imposed. A detailed exposition on combina-
tional and sequential functional dependencies can be found in [JB04]. Based on
Craig interpolation and incremental SAT solving, recent work [LJHM07] further

48

extends the scalability of the exploration of combinational functional dependen-
cies, where designs with hundreds of thousands of gates are handled effectively.

7.2 Inductive Signal Correspondence

In register correspondence, we search an equivalence relation over signals at reg-
ister outputs. In fact, there is no need to restrict ourselves to the correspondence
of registers. Given a circuit implementation of an FSM, we may compute the cor-
respondences for all signals (including intermediate signals) of the circuit [vE00].
At first glance it may seem that there is no advantage in computing correspon-
dences among intermediate signals. However, it turns out that identifying such
correspondences helps to tighten the induction hypothesis and thus to tighten
the approximation of the reachable state set.

Similar to Definition 14, we have the following definition.

Definition 15 (Inductive Signal Correspondence). An inductive signal
correspondence of a circuit implementing FSM M = ([[s]], I, [[x]], Ω, δ,λ) is an

equivalence relation
sc
= ⊆ F × F over the set F of circuit signals which satisfies,

for all valuations of x, s,

Base case : I (s) ⇒ Rsc
=

(x, s), and (9)

Inductive case : Rsc
=

(x, s) ⇒ R′sc
=
(x, s), (10)

where

Rsc
=
(x, s) =

∧

(fi,fj)∈
sc
=

fi(x, s) ≡ fj(x, s), and

R′sc
=
(x, s) =

∧

(fi,fj)∈
sc
=

∀x′.[fi(x
′, δ(x, s)) ≡ fj(x

′, δ(x, s))].

In the above definition, the function of a signal fi ∈ F is denoted as fi(x, s).
Note that the functions of all signals are expressed in terms of primary-input and
state variables. With almost the same procedure, we may compute corresponding
signals as shown in Figure 20. Comparing Rrc

=
and Rsc

=
, we see that Rsc

=
(x, s)

imposes a strictly stronger precondition for the implication in Equation (10).
With the stronger inductive hypothesis, it is possible to identify more register
correspondence not detectable in

rc
=.

As a modern integrated-circuit design may contain millions of logic gates,
considering the correspondences of all signals is formidable. In implementing the
computation of inductive signal correspondence, it is desirable to first screen out
obvious inequivalent signal pairs. For that purpose, simulation is often adopted
and is shown to be fast and effective.

The above algorithms in computing register and signal correspondences as-
sume that the initial values of registers are known and unique. However, when the
initial values are not known or not unique a priori, the computation needs to be
modified to take nondeterministic initialization into account. Different notions

49

ComputeInductiveSignalCorrespondence

input: a sequential circuit (with signals F) implementing M = ([[s]], I, [[x]], Ω, δ,λ)
output: the inductive register correspondence of M
begin

01 i := 0

02
sc
=

(i)
:= {(fp, fq) | ∀x, s.[(fp(x, s) ≡ fq(x, s)) ∧ I(s)]}

03 repeat

04 i := i+ 1
05 R :=

V

(fp,fq)∈
sc
=

(i−1) (fp(x, s) ≡ fq(x, s))

06 R′ :=
V

(fp,fq)∈
sc
=

(i−1)(fp(x′, δ(x, s)) ≡ fq(x
′, δ(x, s)))

07
sc
=

(i)
:= {(fp, fq) ∈

sc
=

(i−1)
| ∀x,x′, s.[R(x, s) ⇒ R′(x,x′, s)]}

08 until
sc
=

(i)
=

sc
=

(i−1)

09 return
sc
=

(i)

end

Fig. 20. An algorithm that characterizes the inductive signal correspondence for a
given sequential circuit.

of conformance, e.g. [BS98], may be defined depending on the imposed initial
conditions. (Initialization issues are to be discussed in Section 8.) Nevertheless,
the essential computation based on induction is the same.

Similar to
rc
=, signal correspondence

sc
= can be used for checking the equiv-

alence of two sequential circuits M1 and M2. In effect, these two FSMs are
equivalent if, for all valuations of x, s,

Rsc
=
(x, s) ⇒ λ×(x, s) ≡ 1. (11)

Similar to the case of register correspondence, the above condition is not suffi-
cient to show the inequivalence of two FSMs. That is, false negatives may occur as
well. Nevertheless, the effectiveness in proving of signal correspondence is strictly
stronger than that of register correspondence. In particular, it is complete for
verifying circuits optimized by retiming [LS83,LS91]. By exploiting signal cor-
respondence among different timeframes, inductive signal correspondence can
further be made complete for equivalence checking of circuits optimized with
retiming plus resynthesis plus retiming [JH07]. Although verification via signal
correspondence is incomplete in general, signal correspondence can be used as
a preprocessing step to simplify the circuits to be compared before reachability
analysis is applied.

7.3 Inductive Safety Property Checking

Signal correspondence captures the equivalence relation between two signals.
However, equivalence relation is not the only criterion to be exploited. For in-
stance, among many other possibilities, the relation of implication, ⇒, between
two signals can be computed, as was suggested in [BC00]. It yields an even

50

stronger induction hypothesis than equivalence relation, ⇔, since equivalent sig-
nals f1 ⇔ f2 can be captured by (f1 ⇒ f2) ∧ (f2 ⇒ f1) but f1 ⇒ f2 cannot be
written in terms of ⇔. A further generalization is to consider general temporal
properties as the candidates to be proved by induction. In fact, Rrc

=
and Rsc

=
are

just two special instances of temporal properties of interest. The inductive proof
of a general safety property P can be formalized as follows.

Base case : I(s) ⇒ P (s), and (12)

Inductive case : P (s) ∧ T (s, s′) ⇒ P (s′), (13)

where initial state set I may be of cardinality greater than one, and transi-
tion relation T may contain non-deterministic transitions. (Recall that we may
treat primary input variables as part of the state variables. Thereby, T can be
expressed in terms of state variables only.) By Definition 5, note that the induc-
tion aims to certify that P characterizes a state set closed under the transition
relation T . (It is easily seen that the reachable state set R of reachability analysis
satisfies Equations (12) and (13).)

Observe that proving safety properties by the above induction is incomplete.
When Equations (12) and (13) are satisfied, P holds at any state reachable from
I under T . In contrast, when Equation (12) is violated, P is not true for some
initial state, and a true counterexample is generated. When Equation (13) is
violated instead, P may or may not hold for all reachable states, and a spurious
counterexample, i.e., a false negative, may be generated. Examining the causes,
we see that the induction fails (one of Equations (12) and (13) is violated)
if and only if, in the entire state space, there exists a P -state (a state that
satisfies P) that can transition to a P -state (a state that satisfies P) as shown
in Figure 21 (a). In particular, a false negative can be generated if and only if,
in the unreachable state space, there exists a transition of Figure 21 (a). Since
the entire state space is an over-approximation of the reachable state space,
inductive proofs are in general incomplete.

To make induction complete for property checking, k-step induction [SSS00]
was introduced to strengthen the induction hypothesis by increasing the transi-
tion length k when a false negative occurs. Formally speaking, a k-step induction
consists of

Base case : I(s0) ∧ T k(s0, . . . , sk) ⇒ P k(s0, . . . , sk), and (14)

Inductive case : P k(s0, . . . , sk) ∧ T k+1(s0, . . . , sk+1) ⇒ P (sk+1), (15)

where a state-variable vector s is annotated with a superscript i indicating
that s is instantiated for the ith time-frame, T i(s0, . . . , si) is the shorthand
for T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (si−1, si), and P i(s0, . . . , si) is the shorthand
for P (s0)∧ · · · ∧P (si). Since for k = 0 Equations (14) and (15) reduce to Equa-
tions (12) and (13), respectively, the ordinary induction is a special case of the
k-step induction.

It is not hard to see that a false negative caused by Figure 21 (a) is ruled out
in a 2-step induction. Similarly, a false negative caused by Figure 21 (b) (which

51

�
� ��
� � � �

� � �
� � ��

�

Fig. 21. (a) A transition condition that makes an 1-step induction fail. (b) A transition
condition that makes a 2-step induction fail. (c) A transition condition that makes a
general k-step induction fail.

may appear in a 2-step induction) is ruled out in a 3-step induction. Increasing
the length of transition paths along which P is satisfied makes sure that the
condition that fails the k-step induction does not appear in the (k + i)-step
induction for i = 1, 2, However, a false negative with an infinite path length
is possible, e.g., due to the transition of Figure 21 (c); it cannot be ruled out by
increasing k. Thus, the k-step induction risks non-termination.

Fortunately, this problem can be overcome by adding the following unique-
ness criterion, in addition to Equations (14) and (15).

∧

i≤j≤k

si 6≡ sj

=
∧

i≤j≤k

∨

l

si
l 6≡ sj

l

 (16)

for the state variables. Effectively, in the k-step induction, only simple paths
(on which a state never appears twice) are considered. With the uniqueness
constraint, the termination of the k-step induction is guaranteed.

To summarize, the basic procedure for proving a safety property by the k-
step induction (with the uniqueness criterion) proceeds as follows. We start from
k = 1, i.e., the normal induction. In a k-step induction, three cases may happen.
If Equations (14) and (15) are both satisfied, the property is proven to be true
for the underlying transition system. If Equation (14) is violated, the property
does not hold for the underlying state transition system. In these two cases,
the induction terminates. On the other hand, if Equation (15) is violated, we
increase k by 1, and repeat the induction. In fact, k is upper-bounded by the
length of the longest simple path from an initial state in the underlying STG,
which is not smaller and, in fact, can be exponentially larger than the forward

52

diameter (the upper bound for forward reachability analysis). An example of
such a worst-case is a complete graph.

The induction criteria (including Equations (14), (15), and the uniqueness
criterion) can be formulated as SAT solving, especially, incremental SAT solving
[ES03]. Therefore, in addition to the interpolation-based approach in Section 6.2,
k-step induction is an alternative solution to unbounded model checking of safety
properties.

7.4 Some Reduction Techniques

Re-encoding States for Similarity The aforementioned computation of reg-
ister correspondence and that of functional dependency identify the functional
connections among registers.

Consider the special case of two state-minimized equivalent FSMs. When
their corresponding equivalent states are encoded in the same way, they are
in fact combinationally equivalent. Once their register correspondence is estab-
lished, combinational check suffices to show sequential equivalence. On the other
hand, when the corresponding equivalent states are encoded differently, no reg-
ister correspondence can be concluded in general. In this case, more powerful
techniques, such as the identification of functional dependency, are needed.

When two FSMs M1 and M2 have a one-to-one equivalent state mapping,
there exists some re-encoding able to produce identical next-state and output
functions thus reducing again sequential to combinational equivalence. (The
mapping needs not hold for the entire state sets of M1 and M2, and can hold
merely for their exact or over-approximated reachable state sets.) How to find
such re-encoding is a problem that has been addressed in the work by Quer et
al. [QCC+00]. Even when complete re-encoding cannot be found, due to com-
putational expensiveness or nonexistence, partial re-encoding may increase the
similarity between the two FSMs and simplify their product machine. Notice
that the number of states of a product machine may be larger by an exponential
factor with respect to the number of states of the constituent machines, even
though by experimental evidence it is usually larger by only a small constant
factor. The technique was suggested to work also for sequential circuits with
different number of registers, to ease sequential equivalence checking.

State minimization of a sequential circuit without explicit state space explo-
ration has been studied in [LN91,Tam93,JB03], where equivalence classes are
represented with BDDs.

Exposing Registers for Observability One can view the process to check
the equivalence of FSMs M1 and M2 through the product machine M× as
constructing a relation on pairs of states R ⊆ Q1 × Q2 such that (q1, q2) ∈ R
if they are simultaneously reachable, and they produce the same outputs under
the same inputs, namely,

(q1, q2) ∈ R⇔ ((q1, q2) reachable in M× ∧ ∀σ ∈ Σ.(λ1(σ, q1) ≡ λ2(σ, q2))).

53

It can be proved that the two FSMs are equivalent if and only if the relation
R forms a bi-simulation relation, which for every (q1, q2) ∈ R and every σ ∈ Σ
satisfies

1. (q01 , q
0
2) ∈ R for q01 ∈ Q0

1 and q02 ∈ Q0
2,

2. δ1(σ, q1) = q′1 implies ∃q′2 ∈ Q2.(δ2(σ, q2) = q′2 ∧ (q′1, q
′
2) ∈ R), and

3. δ2(σ, q2) = q′2 implies ∃q′1 ∈ Q1.(δ1(σ, q1) = q′1 ∧ (q′1, q
′
2) ∈ R).

In other words, the two FSMs are equivalent if and only if firstly their initial
states are equivalent, secondly for every state q′1 (q′2) to which q1 (q2) can go,
there is a state q′2 (q′1) to which q2 (q1) can go under the same input, and
thirdly q′1 and q′2 are equivalent. In order to obtain R, we need to find the set of
simultaneously reachable state pairs by state traversal of M×.

By exposing register outputs as observable pseudo primary outputs, state
equivalence is simplified to 1-step state equivalence (recall Definition 6). The
idea was exploited in [AGM01] to check the bi-simulation property of a state
relation between M1 and M2 under 1-step state equivalence.

Consider constructing, instead of the relation R, another relation R† ⊆ Q1×
Q2, called 1-equivalence relation in [AGM01], with

(q1, q2) ∈ R† ⇔ (q1 reachable in M1 ∧ q2 reachable in M2 ∧ ∀σ ∈ Σ.(λ1(σ, q1) ≡ λ2(σ, q2))).

That is, two states q1 ∈ Q1 and q2 ∈ Q2 with (q1, q2) ∈ R† if they are individually
reachable in their constituent FSMs and produce the same outputs under the
same inputs. Therefore R† differs from R in that it holds between pairs of states
individually reachable in the two FSMs. So to compute R† we need not find out
which states are simultaneously reachable by traversing the product machine,
but we only need to know the set of reachable states of each individual FSM.

A question to ask is whether or not still the proposition holds that M1 and
M2 are equivalent if and only if the relation R† is a bi-simulation relation. Since
R ⊆ R†, it is immediate that, if R† satisfies the bi-simulation property, then so
does R. Hence the checking is sufficient to verify the equivalence of M1 and M2.
However, since R† is an over-approximation of R, there can be a false negative,
i.e., a case when the check fails on a pair of states that are not simultaneously
reachable.

To rule out such false negatives, in [AGM01] the complete-1-distinguishability
(C-1-D) property, defined as any two states can be distinguished at the outputs
with an input sequence of length 1, is imposed upon the states of M1 and M2.
By restricting M1 to obey the C-1-D property, it can be proved that, if M1 and
M2 are equivalent, then R† is a bi-simulation relation. Conversely, if R† is not
a bi-simulation relation, then for sure M1 and M2 are inequivalent. The C-1-D
property avoids the false negatives because, when the property holds for M1, for
each state q2 in M2 there is exactly one state q1 in M1 such that (q1, q2) ∈ R†,
and also, if q2 is reachable in M2, then (q1, q2) is reachable in M×. So, when M1

has the C-1-D property, the set of pairs of equivalent separately reachable states
is the same as the set of pairs of equivalent simultaneously reachable states.

The C-1-D property can be viewed as a condition under which backward
reachability analysis attains convergence in one iteration, because backward

54

traversal refines iteratively the partition obtained initially by 1-step state equiv-
alence. (Connections between reachability analysis and state equivalence are
detailed in Section 5.2.)

The above discussion can be straightforwardly generalized to k-equivalence
relation and complete-k-distinguishability. To make sure that M1 is 1- or k-
distinguishable, some registers have to be exposed as observable primary outputs.
It imposes restrictions on circuit synthesis. When all registers are exposed, the
circuit can only be synthesized combinationally keeping intact register bound-
aries. Therefore the method can be seen as intermediate between pure combi-
national synthesis and verification versus unrestricted sequential synthesis and
verification.

8 A Hierarchy of Classes of Sequential Equivalence

In the previous exposition, we assumed that FSMs can start from their pre-
specified initial states, so that equivalence checking reduces to verifying the
equivalence of the initial states. This initialization assumption however should
be questioned because in reality a circuit may not begin with the desired ini-
tial state and this fact has to be enforced somehow. We are going to discuss
next what happens when there are no known initial states. In fact, the way an
FSM is initialized affects the definition of sequential equivalence. We first study
the initialization problem of FSMs and then discuss some variants of sequential
equivalence.

8.1 Resetability and Alignability

In hardware implementation of an FSM, it is not immediate that the imple-
mented FSM can be prepared in its designated initial states. This is because,
when a circuit is powered up, the latched values in the state-holding elements
(registers) are uncontrollable and can be of value either 0 or 1 indefinitely. There-
fore, the circuit can be in an arbitrary state. An initialization (or reset) mecha-
nism is needed to drive the circuit into some designated initial states before the
FSM can operate correctly. A simple approach to rectifying the problem of un-
certain power-up states is to add reset circuitry for every register. (A register is
of explicit reset if some reset circuitry is associated with it. Otherwise, a register
is of implicit reset.) Once a circuit is powered up, a reset signal is activated to
trigger the reset mechanism for a register to latch its right initial value. How-
ever, this approach may incur heavy area penalties especially for a design with
an excessive number of registers because the reset signal needs to be connected
to all the registers. Another solution (without incurring any hardware overhead)
to the reset problem is to apply some input sequence enforcing registers to have
desired values. On the other hand, a hybrid solution with partial reset is possible,
where only a subset of the registers is selected for explicit reset.

It is noteworthy that, if we treat the additional reset circuitry as an integral
part of a design and thus the reset signal is part of the primary inputs, explicit

55

reset can be seen as a special case of implicit reset. Consequently, we may only
need to focus on implicit reset as we shall do in the sequel. Because the input
sequences for implicit reset may not always exist, we study the resetability of an
FSM. Moreover, for a resetable FSM, we would like to obtain an input sequence
that resets the FSM.

To reflect the situation that a circuit when powered up may not be in desig-
nated initial states, we modify the definition of an FSM and speak of a hardware
finite state machine instead.

Definition 16 (Hardware Finite State Machine). A hardware finite state
machine (HFSM) is a tuple (Q,Σ,Ω, δ,λ) or (Q,Σ,Ω, T,λ), similar to the def-
inition of an FSM except for the absence of an initial state set.

We define a hardware state transition graph (HSTG) for an HFSM in the same
way as an STG for an FSM except that initial states are not identified. An
HFSM (HSTG) is more primitive than an FSM (STG) in the sense that there is
no notion of initial states.

Given an HFSM and some target initial state, we may study if the HFSM
can be brought to this state through some input sequence from any power-up
states.

Definition 17 (Strict Resetability). An HFSM H = (Q,Σ,Ω, T,λ) is called
strictly resetable if there exists an input sequence σ ∈ Σ∗ (known as the reset
sequence or synchronization sequence) and a state q0 ∈ Q (known as the reset
state) such that Img

σ
(q, T) = q0, for any q ∈ Q.

From the above definition, an FSM M with a single initial state can be derived
from an HFSM H if H is resetable with respect to the initial state of M. Notice
that a reset sequence is universal in the sense that it applies to arbitrary power-
up states. By initializing an HFSM to a single reset state, Definition 17 may seem
somewhat restricted. When in particular two states are equivalent, it does not
matter if the HFSM is reset to anyone of them. It brings up a relaxed definition
of resetability.

Definition 18 (Essential Resetability). An HFSM is called essentially re-
setable if, under any power-up states, it can be initialized to a set of equivalent
reset states I through a common reset sequence.

In hardware design, FSMs are supposed to behave deterministically after reset.
Therefore, unless the reset states I are all equivalent, the HFSM H may behave
differently depending on which state in I it is reset to. It is the reason that we
assume all initial states must be equivalent.

Strict resetability and essential resetability can be connected as follows.

Proposition 5. An HFSM is essentially resetable if and only if its quotient
(i.e., state-minimized) HFSM is strictly resetable.

(A quotient HFSM is defined the same as a quotient FSM except for the igno-
rance of initial states.) The proof can be shown straightforwardly by the deferred

56

Lemma 1, and is omitted. Essential resetability is more adequate than strict re-
setability in the context of hardware design. In the sequel, when resetability is
referred, we shall mean essential resetability unless otherwise said. Equivalently,
we may assume an HFSM is in its quotient form and speak of strict resetability.

Algorithms for resetability analysis, as those for reachability analysis, are
heavily influenced by the data structures used to realize the computations. Fol-
lowing the historical development, we begin with an enumerative approach to
resetability analysis as well as reset sequence generation, and then we proceed
with an algorithm that lends itself to a symbolic implementation.

Explicit Graph Algorithm for Resetability Analysis The reset problem
can be resolved based on explicit graph enumeration [Koh78]. Essentially, the
resetability of an HFSM can be easily understood through a tree construction.

Definition 19 (Synchronization Tree). The synchronization tree of an HFSM
H = (Q,Σ,Ω, T,λ) is an infinite tree G = (V,E), where a vertex v ∈ V corre-
sponds to a state set Qv ⊆ Q and an edge labelled with σ ∈ Σ from vertex u to
vertex v signifies Qv = Imgσ(Qu, T). The unique root vertex r ∈ V corresponds
to the universal state set Q, i.e., Qr = Q.

A synchronization tree enumerates all possible input sequences and lists the
corresponding possible states of the considered HFSM.

Example 17. Figure 22 shows an example, where T is the synchronization tree
of the given HSTG G. Under an empty input sequence (at power-up), the HFSM
may be in any state as indicated in the root node; under the input sequence ‘0’,
it is possible to be in any state of {q0, q1, q3} as indicated in the left successor
node of the root.

Since we are concerned with finite state sets, labels on vertices will repeat even-
tually. A finite construction suffices for an exhaustive enumeration.

The relation between a synchronization tree and the resetability of an HFSM
can be stated as follows.

Proposition 6. An HFSM is resetable with respect to a state set I ⊆ Q if and
only if its corresponding synchronization tree has a path from the root vertex r
to some vertex v with its corresponding state set Qv ⊆ {q ∈ Q | ∃qi ∈ I.q ∼ qi}.
Also, the ordered labels on the edges along this path give the corresponding reset
sequence.

(Assume that all the states in I are equivalent.) In hardware design, short reset
sequences are preferable to long ones.

Example 18. The HSTG of Figure 22 is resetable to any reset state because input
sequences ‘1,1,0’, ‘1,1,1’, ‘1,1,0,0’, and ‘1,1,0,1’ are reset sequences for reset states
q3, q2, q1, and q0, respectively.

Whereas the synchronization tree gives an exact characterization of resetabil-
ity, there are some interesting necessary conditions for an HFSM to be resetable

57

� �
� � � �� � � � � � � � � � � � � �� � � �� � 	 �� � � � � � �

� � � � � � �� � � � � 	 �

� � � � � � � � � �� � � � � � � � 	 �
� � � � � � � � � � � 	 �

� � � � � � �
� � � � � � � � 	 �

� �� � � � � 	 � � � � � � � �

� � � �� � � � � � � �� �
� 	 � � � �� � � �
�

Fig. 22. A hardware state transition graph and its corresponding synchronization tree.

58

� � �� � � � � �� � � � � � � � � � � �� � �
� � �

� � �
� � � � � � � � �

� � �� � �
� � �

� � � � � � � �� � � 	 �
� �
Fig. 23. A hardware state transition graph.

that may be used for fast screening of resetability. Whether an HFSM is resetable
depends on the structure of its HSTG, in particular, the strongly connected com-
ponents (SCCs).

Definition 20 (Strongly Connected Component). A subgraph G of an
STG or HSTG is a strongly connected component if every (ordered) vertex
pair (u, v) of G is connected by some path from u to v. An SCC is called closed
if its vertex set corresponds to a closed state set. Otherwise it is open.

Note that there may exist an open SCC contained by a closed SCC, but not the
converse, that is, a closed SCC cannot be contained by an open or closed SCC
except for itself. If fact, any two distinct closed SCCs must be disjoint.

Example 19. In Figure 23, the open SCC induced by vertex q8 is contained in
the closed SCC induced by vertices q6, q7, q8.

Proposition 7. The reset states of an HFSM H must be inside a closed SCC,
or equivalent to some state in a closed SCC of the HSTG of H.

Proof. For the sake of contradiction, assume the reset states of H are not in a
closed SCC and inequivalent to any state in a closed SCC. Then, when powered
up in a state in a closed SCC, H cannot be reset to the designated reset states.
It contradicts with the assumption that H is resetable.

Proposition 8. An HFSM H is resetable only if either its HSTG has a single
closed SCC or all the state subgraphs induced by the closed SCCs are isomorphic
after state minimization.

Proof. Assume the HSTG of H has multiple inequivalent closed SCCs. Then
H once powered up in some closed SCC cannot escape to another closed SCC.
Hence H may not always be reset to some designated reset state. It contradicts
with the assumption that H is resetable.

59

However, the converse is not true because states in a closed SCC may not be
resetable at all.

Proposition 9. For a resetable HFSM, any state reachable from a reset state
must be a reset state.

Proof. After a reset sequence σ is applied, an HFSM is in an equivalence class
of states I (the reset states with respect to σ). Let state q† be reachable from
some state in I under input sequence σ†. Then, all such q† must be equivalent
since states in I are all equivalent, and thus form another set of equivalent reset
states with respect to a new reset sequence σ ◦ σ†.

This proposition can be justified with Example 18.
The resetability analysis discussed above relies on explicit enumeration over

the synchronization tree. An alternative approach to resetability verification re-
lies on reachability analysis and can be implemented symbolically with BDDs [PJH94].

Implicit Symbolic Algorithm for Resetability Analysis Resetability anal-
ysis can be reformulated in terms of the alignability of a pair of states.

Definition 21 (State Alignment). Two states q1 and q2 of an HFSM H =
(Q,Σ,Ω, T,λ) are alignable if there exists an aligning sequence σ ∈ Σ∗ of q1
and q2 such that Img

σ
(q1, T) ∼ Img

σ
(q2, T).

Lemma 1. For an HFSM H = (Q,Σ,Ω, T,λ), if two states q1, q2 ∈ Q are
alignable under some input sequence σ ∈ Σ∗, then states q3, q4 ∈ Q, with q3 ∼ q1
and q4 ∼ q2, are alignable as well under σ.

Proof. Since q1 and q2 are alignable under σ, Img
σ
(q1, T) ∼ Img

σ
(q2, T). On the

other hand, q3 ∼ q1 implies Img
σ
(q3, T) ∼ Img

σ
(q1, T). Similarly, Img

σ
(q4, T) ∼

Img
σ
(q2, T). It follows that Img

σ
(q3, T) ∼ Img

σ
(q4, T). That is, q3 and q4 are

alignable under σ.

Consequently, we may speak of alignments over state equivalence classes rather
than individual states. To compute reset sequences, it is more convenient to first
reduce an HSTG to its quotient (state-minimized) HSTG such that no state
equivalence needs to be checked later on.

The following theorem shows that a universal reset sequence can be built
from concatenating local aligning sequences that align pairwise states.

Theorem 5. An HFSM is resetable if and only if every of its state pairs is
alignable under some finite input sequence.

Proof. (⇒) By the definition of HFSM resetability, all state pairs are alignable
(under a unique reset sequence).

(⇐) For an HFSM with any pair of its states alignable, a universal sequence
that aligns all state pairs can be constructed from local aligning sequences.
Figures 24 and 25 show a procedure that determines if a given HFSM is resetable
and returns a reset sequence if it exists. The correctness of the procedure is
proved in Theorem 6.

60

Algorithm: ComputeResetSequence

input: a state-minimized HFSM H = (Q,Σ,Ω, T,λ)
output: a reset sequence
begin

01 i := 0

02 S(i) := Q

03 repeat

04 i := i+ 1

05 σi := ComputeAligningSequence(sa, sb,H) for some sa, sb ∈ S(i−1) and sa 6= sb

06 if σi = ∅
07 return HFSM unresetable

08 S(i) := Img
σi

(S(i−1), T)

09 until |S(i)| < 2
10 return σ1 ◦ · · · ◦ σi

end

Fig. 24. An algorithm that computes a universal reset sequence for a given HFSM.

The procedure can be implemented with BDD-based computations [PJH94].

Theorem 6. The procedure in Figures 24 and 25 terminates and returns a cor-
rect answer upon termination.

Proof. The algorithm ComputeResetSequence in Figure 24 implicitly assumes
|Q| ≥ 2. Otherwise, the given HFSM H is readily in its reset state when powered
up, and thus there is no need to compute the reset sequence.

In the iterative computation, two states not aligned yet are selected for
alignment. If the two states are unalignable, they provide a certificate of non-
resetability of the given HFSM and the program terminates. Otherwise, the set
S(i) in Figure 24 decreases monotonically since at each iteration a state pair is
aligned. Because |S(i−1)|−|S(i)| ≥ 1 and S(0) = Q, there exists some j such that
|S(j)| < 2 and thus the procedure terminates.

To see that the computed input sequence is indeed a reset sequence, consider
first the algorithm ComputeAligningSequence. The procedure consists of two
disjoint loops. The first loop performs forward reachability to check if state
pair (qa, qb) in the product machine of H × H can reach some state (q, q) ∈
Q × Q. (The product of two HFSMs is defined similarly to that of two FSMs
except for ignoring the initial state set.) If the answer is negative, states qa and
qb are not alignable and an empty input sequence is returned. Otherwise, the
input sequence for (qa, qb) to reach (q, q) is computed by backward reachability
analysis in the second loop. The computed aligning sequences are concatenated
and returned by algorithm ComputeResetSequence. The overall input sequence
drives the given HFSM H to a unique state (i.e. the corresponding reset state)
upon termination. That unique state is the only state in the final image S(i) :=
Img

σi
(S(i−1), T) produced by the algorithm at the last cycle, when the condition

|S(i)| < 2 holds.

61

Algorithm: ComputeAligningSequence

input: two distinct states qa, qb and their underlying HFSM H
output: an input sequence that aligns the given state pair
begin

01 let T× be the transition relation of the product machine H×H
02 i := 0

03 R(0) := (qa, qb)
04 repeat

05 i := i+ 1

06 R(i) := R(i−1) ∪ Img(R(i−1), T×)

07 D := R(i) ∩ {(q, q) | q ∈ Q}

08 until D 6= ∅ or R(i) = R(i−1)

09 if D = ∅
10 return ∅
11 n := i

12 let (q
(i)
d , q

(i)
d) ∈ D

13 repeat

14 let (q
(i−1)
d , q

(i−1)
d) ∈ {R(i−1) ∩ PreImg((q

(i)
d , q

(i)
d), T×)}

15 σi := arg
x
[T×(x, (q

(i−1)
d , q

(i−1)
d), (q

(i)
d , q

(i)
d))]

16 i := i− 1
17 until i = 0
18 return σ1 ◦ · · · ◦ σn

end

Fig. 25. An algorithm that computes an aligning sequence for a given state pair under
a given transition relation.

If the resetability of an HFSM is the only primary concern but not the re-
set sequences, then we may test the resetability more effectively based on the
following corollary.

Corollary 2. An HFSM H = (Q,Σ,Ω, T,λ) is strictly resetable if and only if
any state of the product HFSM H×H = (Q×Q,Σ,Ω, T×, λ×) can reach some
state in S = {(q, q) | q ∈ Q}, i.e., the backward reachable state set of S equals
the universal set.

Proof. The corollary follows from Theorem 5.

A similar argument holds for essential resetability by modifying S to be the set
{(q1, q2) | q1, q2 ∈ Q, q1 ∼ q2}.

8.2 A Landscape of Sequential Equivalences

Depending on the equivalence criteria of HFSMs in the initialization phase, we
may have different notions of equivalence.

Alignment Equivalence Definition 21 and Theorem 5 can be generalized to
the alignment of two different HFSMs.

62

Definition 22 (HFSM Alignment and Alignment Equivalence). Two
HFSMs H1 = (Q1, Σ,Ω, T1,λ1) and H2 = (Q2, Σ,Ω, T2,λ2) are alignable if
∀q1 ∈ Q1, q2 ∈ Q2, ∃σ ∈ Σ∗.Img

σ
(q1, T1) ∼ Img

σ
(q2, T2). In this case, we say

that H1 and H2 are alignment equivalent, denoted as H1
∼= H2.

Similar to Theorem 5, we have

Theorem 7. Two HFSMs H1 = (Q1, Σ,Ω, T1,λ1) and H2 = (Q2, Σ,Ω, T2,λ2)
are alignable (or alignment equivalent) if and only if ∃σ ∈ Σ∗, ∀q1 ∈ Q1, q2 ∈
Q2.Img

σ
(q1, T1) ∼ Img

σ
(q2, T2).

Proof. (⇐) This direction follows from Definition 22.
(⇒) A universal aligning sequence can be constructed in a way similar to the

procedure ComputeResetSequence in Figure 24.

In other words, H1
∼= H2 if they share a common reset sequence and behave

equivalently after reset. Alignment equivalence is more stringent than FSM
equivalence since it requires that two FSMs share a common reset sequence in
addition to indistinguishable input-output behavior after reset. However, note
that, by the definition of alignment equivalence of two HFSMs, their input-
output behaviors during the reset phase need not be identical.

Theorem 8. Alignment equivalence ∼= is symmetric and transitive, but not nec-
essarily reflexive in general.

Proof. For H1
∼= H2, any state pair (q1, q2), with q1 of H1 and q2 of H2, is

alignable and independent of the order of H1 and H2. Therefore, alignment
equivalence is symmetric.

To prove the transitivity, assume H1
∼= H2 and H1

∼= H3. We show H2
∼= H3.

There exists a reset sequence σ1,2 aligning H1 and H2 and a reset sequence σ1,3

aligning H1 and H3. Let σ = σ1,2 ◦ σ1,3. We claim that σ is a reset sequence
aligning any pair of H1, H2, and H3. To see it, consider first the alignment of H1

and H2 under σ. After σ1,2 is applied, H1 and H2 are aligned and the current
states of H1 and H2 are in a single equivalence class. Now applying another
input sequence σ1,3 on H1 and H2 does not drive equivalent states to non-
equivalent states. Therefore, the new current states of H1 and H2 after applying
σ remain in a single equivalence class. That is, for any q1 ∈ Q1 and q2 ∈ Q2, let
q′1 = Img

σ
(q1, T1) and q′2 = Img

σ
(q2, T2). Then q′1 ∼ q′2. On the other hand, σ

must be an alignment sequence for H1 and H3 because, no matter what state
pair (q†1, q

†
3) is reached after applying σ1,2 to H1 and H3, it can always be aligned

by σ1,3. Thus, for any q3 ∈ Q3, let q′3 = Img
σ
(q3, T3). Then q′1 ∼ q′3, from which

q′2 ∼ q′3, and thus H2
∼= H3.

Alignment equivalence is not necessarily reflexive because, if an HFSM is not
essentially resetable at all, it cannot be alignment equivalent to itself.

Theorem 9. An HFSM is alignment equivalent to itself if and only if it is
essentially resetable.

63

Proof. Let H† be another copy of an HFSM H.
(⇒) Suppose H is alignment equivalent to itself. Then any state pair (q1, q

†
2)

for q1 of H and q†2 of H† can be aligned by a universal reset sequence. Since

every state of one HFSM, say q†2 of H†, has a corresponding equivalent state of
the other, say q2 of H, then state pair (q1, q2) of H can be aligned in H with the
same reset sequence by Lemma 1. Thus H must be essentially resetable.

(⇐) If H is essentially resetable, then any state pair (q1, q2) of H can be
aligned by some universal reset sequence σ. Consider the disjoint union state
space of H and H†. Every state of one HFSM has a corresponding equivalent
state of the other, say q2 ∼ q†2 for state q†2 of H†. Again by Lemma 1, (q1, q

†
2)

has the same reset sequence σ. Hence H and H† are alignment equivalent.

In other words, alignment equivalence ∼= is reflexive only for essentially resetable
HFSMs. Therefore, alignment equivalence ∼= is an equivalence relation among
essentially resetable HFSMs.

Corollary 3. If H1
∼= H2, then H1

∼= H1.

Proof. From Theorem 8, H1
∼= H2 implies H2

∼= H1 by symmetry. Further,
H1

∼= H1 holds by transitivity.

For two HFSMs, suppose that any state in one HFSM has a corresponding
equivalent state in the other. Even then, it is not necessarily the case that there
exists an input sequence that aligns these two HFSMs. This is similar to the fact
that the converse condition of Proposition 8 does not hold. However the next
theorem shows that then unalignability implies that both of the two HFSMs are
unresetable.

Theorem 10. Given two HFSMs, assume any state in one machine has some
corresponding equivalent state in the other. Then these two HFSMs are alignable
if and only if one of them (equivalently, each of them) is essentially resetable.

Proof. Let Q and Q† be the state sets of HFSMs H and H†, respectively. Assume
any state of H has a corresponding equivalent state of H†, and vice versa.

(⇒) Assume H ∼= H†. Then, by Lemma 1, any state pair (q1, q2) ∈ Q×Q of

H must be alignable because there always exists (q1, q
†
2) ∈ Q×Q†, with q†2 ∼ q2,

alignable between H and H†. Therefore, H is essentially resetable. Similarly, we
know H† is essentially resetable as well.

(⇐) Without loss of generality, assume H is resetable. Then, by Lemma 1,

any state pair (q1, q
†
2) ∈ Q ×Q† must be alignable between H and H† because

there always exists (q1, q2) ∈ Q×Q, with q†2 ∼ q2, alignable in H. Therefore, H
and H† are alignable.

Theorem 11. Consider the closed SCCs of the HSTGs of two alignment equiv-
alent HFSMs. Suppose that power-up states are in the SCCs. Then any reset
sequence for one HFSM is also a reset sequence for the other.

64

Proof. In the SCCs, any state in one HFSM must have an equivalent state in
the other. Otherwise, these two HFSMs are not alignment equivalent. On the
other hand, any of the HFSMs is alignment equivalent to itself by Corollary 3,
and thus resetable by Theorem 9. From Lemma 1, these two HFSMs must share
the same set of reset sequences in the SCCs.

To study the structure of a reset sequence, we define

Definition 23. A state q of an HFSM is dangling if it has no predecessor states
(i.e., no states can transition to q) or all of its predecessor states are dangling.
Otherwise, it is non-dangling.

Example 20. Consider Figure 23. States q1 and q2 are dangling, and all others
are non-dangling.

Any reset sequence σ can be decomposed into three subsequences such that
σ = σ1 ◦ σ2 ◦ σ3 with

1. Subsequence σ1 drives an HFSM out of dangling paths. In this phase, as
long as |σ1| is no less than the length of the longest dangling path, any
input sequence is valid. (A shorter σ1 may require detailed knowledge about
the transitions of the dangling paths of an HSTG.)

2. Subsequence σ2 drives an HFSM out of open SCCs and into a closed SCC.
3. Subsequence σ3 enforces an HFSM entering a reset state (in a closed SCC).

Notice that subsequences σ1 and σ2 may be empty.

Example 21. Continuing Figure 23, observe that the HSTG has a reset sequence
σ = ‘1, 1, 0, 1, 0, 0, 1, 1’ with reset state q8. As analyzed above, σ can be decom-
posed into σ1 = ‘1, 1’, σ2 = ‘0, 1, 0’, and σ3 = ‘0, 1, 1’.

For two alignment equivalent HFSMs, any state in a closed SCC of one HFSM
must have an equivalent state in a closed SCC of the other. Therefore, by Theo-
rem 11, subsequence σ3 is a reset subsequence common to all alignment equiv-
alent HFSMs. Two alignment equivalent HFSMs can always have a common
suffix.

In certain classes of circuit transformations, e.g. see [JB06], only dangling
paths of an HSTG can be changed. In that case, (non-)resetability is preserved.

Reset-Independent Equivalences Recall that FSM equivalence is an equiva-
lence relation over FSMs, where initial states are pre-specified; alignment equiv-
alence is an equivalence relation only over essentially resetable HFSMs. Here we
study some other notions of equivalence over HFSMs that are independent of
initial states or resetability.

Definition 24 (Strict Equivalence). Two HFSMs are strictly equivalent if,
for every state in one machine, there is an equivalent state in the other.

65

This definition corresponds to the definition of “FSM equivalence” in [HS66,Koh78],
where the “FSM” is meant to be our “HFSM.” Here we name it differently to
avoid confusion.

If two HFSMs are strictly equivalent, they are equivalent according to Defini-
tion 9 as long as the initial states are properly specified. On the other hand, FSM
equivalence (of Definition 9) implies HFSM strict equivalence under restriction
to the reachable state subspace. It can be checked that HFSM strict equivalence
forms an equivalence relation over resetable and non-resetable HFSMs.

Another equivalence definition [SP94], more relaxed than HFSM strict equiv-
alence, is based on the notion of safe replacement.

Definition 25 (Safe Replacement). An HFSM H1 = (Q1, Σ,Ω, T1,λ1) is
a safe replacement for H2 = (Q2, Σ,Ω, T2,λ2), denoted as H1 ⊑ H2, if ∀q1 ∈
Q1,σ ∈ Σ∗, ∃q2 ∈ Q2 such that λ1(σ1, q1) = λ2(σ1, q2) and λ1(σi, Img

σi−1
(q1, T1)) =

λ2(σi, Img
σi−1

(q2, T2)) for i = 2, . . . , |σ|, where σj = σ1σ2 . . . σj is a substring
of σ.

By comparing the above definition with Definition 8 of equivalent states, one
notices that the difference is in the quantification order ∀σ∃q2 here vs. ∃q2∀σ

in Definition 8. In Definition 25, a state q1 ∈ Q1 needs not have an equivalent
state q2 ∈ Q2, but for every input sequence there may be a different state of
Q2 that behaves like q1 under that input sequence. However, if H2 is replaced
with H1 for H1 ⊑ H2, the underlying environment will not experience any new
response because the input-output behavior of H1 when powered up can always
be simulated by H2.

Example 22. Let G1 and G2 of Figure 26 be the HSTGs of HFSMs H1 and H2,
respectively. Then H1 ⊑ H2. This is because states qb, qc, and qd of G1 are
equivalent to q6, q7, and q8 of G2, respectively. In addition, qa of G1 and q4 of
G2 are equivalent under input 0 while qa of G1 and q7 of G2 are equivalent under
input 1.

Definition 26 (Safe-Replacement Equivalence). Two HFSMs H1 and H2

are safe-replacement equivalent if H1 ⊑ H2 and H2 ⊑ H1.

Safe-replacement equivalence is reflexive, symmetric and transitive, and thus
forms an equivalence relation. From the logical validity ∃∀ ⇒ ∀∃, it follows
that strict equivalence implies safe-replacement equivalence. Moreover, regard-
less of resetability, safe-replacement equivalence is the coarsest condition for the
environment not being able to distinguish the replacement of one HFSM with
another.

When restricted to resetable HFSMs, we can connect safe replacement and
alignment equivalence as follows.

Theorem 12. If HFSM H1 = (Q1, Σ,Ω, T1,λ1) is a safe replacement of a re-
setable HFSM H2 = (Q2, Σ,Ω, T2,λ2), then H1 and H2 are alignment equiva-
lent.

66

� �

� �
� � �
� � �

� � � � � � � � �
� � �� � �

� � �
� � � � � 	�

� � �
� � � � � �

� � �� � �
� � � � � � � � �

� � �� � �
� � �

� � � � � � � � � � �� �� �� � � � � �
� � � � � �� � �

Fig. 26. Two HSTGs G1 and G2, where given any state in G1 and any input sequence
σ, there exists a state in G2 that generates the same output sequence under σ.

Proof. We show that safe replacement preserves reset sequences, that is, any
reset sequence of H2 is also a reset sequence of H1. In addition, H1 and H2 are
aligned to equivalent states under the same reset sequence.

Assuming that σ is a reset sequence of H2, we must show ∀q1 ∈ Q1, q2 ∈
Q2.Img

σ
(q1, T1) ∼ Img

σ
(q2, T2). Suppose by contradiction that there exists q′1 ∈

Q1 such that Img
σ
(q′1, T1) 6∼ Img

σ
(q2, T2). Then there exist ρ ∈ Σ∗ and σ′ ∈ Σ

such that λ1(σ
′, Img

σ◦ρ(q′1, T1)) 6= λ2(σ
′, Img

σ◦ρ(q2, T2)). But, since H1 is a safe
replacement of H2, there is a state q′2 ∈ Q2 such that λ1(σ

′, Img
σ◦ρ(q′1, T1)) =

λ2(σ
′, Img

σ◦ρ(q′2, T2)). Because σ is a reset sequence of H2, so is σ◦ρ by Proposi-
tion 9. Consequently, for every q2 ∈ Q2, λ2(σ

′, Img
σ◦ρ(q2, T2)) = λ2(σ

′, Img
σ◦ρ(q′2, T2)) =

λ1(σ
′, Img

σ◦ρ(q′1, T1)). It contradicts with λ1(σ
′, Img

σ◦ρ(q′1, T1)) 6= λ2(σ
′, Img

σ◦ρ(q2, T2)).
Therefore, σ is a reset sequence of H1 as well, and Img

σ
(q1, T1) ∼ Img

σ
(q2, T2)

holds for any q1 ∈ Q1 and q2 ∈ Q2. By Theorem 7, it follows that H1 and H2

are alignment equivalent.

67

Thus safe-replacement equivalence imposes a stronger condition than alignment
equivalence over resetable HFSMs.

Consider two resetable HFSMs H1 and H2 that are safe-replacement equiv-
alent. During reset, the output sequences of H1 and H2 may differ even under
the same reset sequence. After reset, however, their output sequences will be
the same under the same input sequence. Note that, even though the output se-
quences of the two HFSMs may differ during reset, the underlying environment
still cannot tell if one HFSM is replaced with the other. (These inconsistent out-
put sequences are purely due to the nondeterminism at power-up. Even for the
same HFSM, the output sequence during reset at this time may differ from that
at next time.)

Example 23. Consider the corresponding HFSM H of the HSTG G of Figure 22.
Suppose two copies of H are powered up in different states, say q0 and q1.
(These two copies are safe-replacement equivalent.) Under the reset sequence
‘1,1,1’, they produce output sequences ‘1,0,0’ and ‘0,0,0’, respectively, and both
are reset to state q2.

Safe replacement is sometimes more stringent than necessary. In some cases,
delayed replacements [SPAB95] are allowed, where the new HFSM replacing the
old one can be clocked for several cycles before the original reset sequence is
applied. Here we do not care about input-output behavior in the first n clock
cycles.

Definition 27 (Delayed HFSM). The n-cycle delayed HFSM of an HFSM
H = (Q,Σ,Ω, T,λ), denoted as Hn, is the same as H except for restricting its
state set to {q′ | ∃ q ∈ Q,σ ∈ Σn. q′ = Img

σ
(q, T)}.

The purpose of delaying an HFSM for n clock cycles is to let the HFSM get rid
of some dangling states before the original reset sequence is applied.

Definition 28 (Delay Replacement). An HFSM H1 = (Q1, Σ,Ω, T1,λ1) is
an n-cycle delayed safe replacement (or simply n-cycle delay replacement) for
H2 = (Q2, Σ,Ω, T2,λ2) if H1

n ⊑ H2.

It is easily seen that H1
n ⊑ H2 implies H1

n+1 ⊑ H2. Moreover, delay replace-
ment is a relaxed definition of safe replacement since a safe replacement is also a
0-cycle delayed replacement. On the other hand, we may connect delay replace-
ment and alignment equivalence over resetable HFSMs as follows.

Proposition 10. If HFSM H1 is an n-cycle delay replacement of a resetable
HFSM H2, then H1 and H2 are alignment equivalent.

Proof. Suppose σ2 is a reset sequence of H2. Since H1 is an n-cycle delay replace-
ment of H2, then, for any input sequence σ1 with |σ1| = n and for any q1 ∈ Q1,
Img

σ1
(q1, T1) is in the state set Qn

1 of Hn
1 ; moreover, Hn

1 is a safe replacement
of H2, but safe replacement preserves reset sequences by Theorem 12, and so
σ = σ1 ◦ σ2 is a reset sequence for H1 and ∀q1 ∈ Q1, q2 ∈ Q2. Img

σ
(q1, T1) ∼

Img
σ2

(q2, T2). However, observe that σ1 ◦ σ2 must also be a reset sequence for

68

Safe-Replacement
Equivalence

Delay-Replacement
Equivalence

Alignment Equivalence

FSM Equivalence

Strict Equivalence

Fig. 27. The hierarchical structure formed by the inclusion relation among various
notions of equivalence over resetable HFSMs.

H2 since the possible states of H2 after applying σ1 are a subset of Q2 which
can still be reset by σ2. Thus, ∀q1 ∈ Q1, q2 ∈ Q2. Img

σ
(q1, T1) ∼ Img

σ
(q2, T2),

and H1
∼= H2.

Similar to the definition of safe-replacement equivalence, we may define delay-
replacement equivalence as follows.

Definition 29 (Delay-Replacement Equivalence). Two HFSMs H1 and
H2 are delay-replacement equivalent if H1

m ⊑ H2 and H2
n ⊑ H1 for some

positive integers m and n.

Figure 27 summarizes the hierarchical structure among the aforementioned
equivalence relations over resetable HFSMs, where FSM equivalence (of Defini-
tion 9) disregards any inconsistent behavior before initialization (in fact the two
circuits under comparison need not be initialized in the same way) and cares only
equivalence after initialization. The Euler diagram shows that, if two resetable
HFSMs are equivalent under a contained relation, then they are equivalent under
the containing relation. There are other notions of equivalence mainly developed
in the testing community. A review can be found in [MS05].

9 Conclusions

This chapter provided the foundations of combinational and sequential hard-
ware equivalence. Due to space reasons, interesting topics were not covered: e.g.,

69

C1

C2
…

…

…

…
…

C1,1

C1,m

C2,1

C2,m

DCnet
dc

O1

O2

Om

O

Fig. 28. Multi-output miter circuit from networks C1 and C2, augmented by a don’t-
care sequential network DCnet.

arithmetic circuit verification, property checking for RTL codes, verification un-
der different levels of abstraction, don’t cares, etc.

External sequential don’t cares (and combinational don’t cares as a special
case) arise as incomplete specification that can be used for better optimization
of the final circuit. They cannot be disregarded during verification to avoid false
negatives, i.e., situations where a reported difference is actually due to a don’t
care sequence, and thus it cannot happen. Sequential don’t cares have been
discussed in [HCC+00], whose authors describe a software package Aquila, a
sequential equivalence checker that is able to handle them. Aquila is based
on an array of techniques centered around ATPG analysis. The way in which
sequential don’t cares are incorporated can be understood from the revised miter
construction shown in Figure 28. It can be seen that the external don’t-care set
is represented by an additional sequential network with only one primary output
dc (part of the specification). If an input sequence is a don’t-care sequence, then
the value of the output signal dc is 1, otherwise it is 0. For example, they mention
the case of a sequential multiplier that produces one care output for every certain
number of clock-cycles; e.g., the don’t care network might produce the output
sequence 11111110, which means that only in the eighth cycle, the output is a
care output.

The basic fact is that the stuck-at-1 fault at the output O in Figure 28 is
untestable if and only if signal C1,k is equal to signal C2,k, k = 1, . . . ,m for all
care input sequences. Indeed, to enforce the output O to 0, at least one of the
OR-gates should produce a 0, which requires dc = 0 (care sequence) and the
XNOR gate to 0 (distinguishing sequence). So a sequential ATPG program can

70

either prove the equivalence or find a distinguishing sequence for a pair of output
signals.

In addition to external don’t cares, there are internal don’t cares that rep-
resent impossible value combinations at some state variables, corresponding to
unreachable states. Provided one has a cheap way of finding them, they can be
exploited to ease the task of verification by avoiding traversing the unreachable
state space.

Other discussions of don’t cares in combinational and sequential equivalence
checking can be found in [SFVD05] and in [RRT04,RRTR03], where it is re-
marked that don’t cares can be seen as extending equivalence checking into a
problem of inclusion checking, meaning that the implementation is included in
the specification if there is an assignment of the don’t-care conditions that makes
them equal.

An even more radical extension, under the name of black box equivalence
checking, supposes that the specification is known, but only parts of the im-
plementation are completed or known (black boxes being the unfinished or
unknown parts), so that inequivalence is declared when the implementation
differs from the specification for all possible replacements of the black boxes
(see [GDDB00,JBM+00] and [SB01]). Then Scholl and Becker [SB01,SB02] stud-
ied the related problem when boxes implement an incompletely specified function
(complete specifications vs. incomplete implementations) and variants of it, aris-
ing in situations like design partitioning in incompletely specified blocks or use
of incompletely specified intellectual property cores; their formulation is appli-
cable also to the dual case when an incomplete specification is checked against
a complete implementation. The solution is based on transforming the imple-
mentation into a circuit that models the incompleteness, but for lack of space
we will not elaborate further on this interesting topic, whose generalization to
model checking is still object of active research [NS04].

Notice that the effort documented in this chapter to solve hardware equiv-
alence checking corresponds to verifying on the product machine a formula,
namely,

AG(O = 0)

in CTL. It is read as: for every path and at every node in the path, it is true that
the output O is 0. In general the AG operator asserts that a formula is true for
all possible evolutions in the future. As mentioned in Section 1.2, however, this
is just one simple formula, out of the many that can be built in CTL or other
temporal logics, using the full power of path quantifiers and temporal modalities.
A discussion of general model checking requires telling another story.

References

[AGM01] P. Ashar, A. Gupta, and S. Malik. Using complete-1-distinguishability
for FSM equivalence checking. ACM Trans. Des. Autom. Electron. Syst.,
6(4):569–590, 2001.

71

[BC00] P. Bjesse and K. Claessen. SAT-based verification without state space
traversal. In Proc. Formal Methods in Computer-Aided Design, 2000.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Proc. Tools and Algorithms for the Construction and
Analysis of Systems, pages 193–207, 1999.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond. Inf. Com-
put., 98(2):142–170, 1992.

[BHSV+96a] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz,
S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer,
R. Ranjan, S. Sarwary, T. Shiple, G. Swamy, and T. Villa. VIS. In M. Sri-
vas and A. Camilleri, editors, Proc. of the Conf. on Formal Methods in
Computer-Aided Design, volume 1166 of LNCS, pages 248–256. Springer
Verlag, November 1996.

[BHSV+96b] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz,
S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer,
R. Ranjan, S. Sarwary, T. Shiple, G. Swamy, and T. Villa. VIS: A System
for Verification and Synthesis. In R. Alur and T. Henzinger, editors, Proc.
of the Conf. on Computer-Aided Verification, volume 1102 of LNCS, pages
332–334. Springer Verlag, August 1996.

[Bra93] D. Brand. Verification of large synthesized designs. In The Proceedings of
the International Conference on Computer-Aided Design, pages 534–537,
November 1993.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Computers, pages 677–691, 1986.

[BS98] J. Burch and V. Singhal. Robust latch mapping for combinational equiv-
alence checking. In Proc. Int’l Conf. on Computer-Aided Design, 1998.

[CBM89] O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous
sequential machines based on symbolic execution. In Proc. Int’l Workshop
Automatic Verification Methods for Finite State Systems, 1989.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[CGMZ95] E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao. Efficient Gen-
eration of Counterexamples and Witnesses in Symbolic Model Checking.
In 32nd Design Automation Conference (DAC 95), pages 427–432, San
Francisco, CA, USA, 1995.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, 1999.

[CM90] O. Coudert and J. C. Madre. A unified framework for the formal verifica-
tion of sequential circuits. In Proc. Int’l Conference on Computer-Aided
Design, pages 126–129, 1990.

[Coo71] S. Cook. The complexity of theorem-proving procedures. In Proc. IEEE
Symposium on the Foundations of Computer Science, pages 151–158,
1971.

[Cra57] W. Craig. Linear reasoning: A new form of the Herbrand-Gentzen theo-
rem. Journal of Symbolic Logic, 22(3):250–268, 1957.

[DLL62] M. Davis, G. Longemann, and D. Loveland. A machine program for
theorem proving. Communications of the ACM, 5:394–397, 1962.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7:201–215, 1960.

72

[ES03] N. Eén and N. Sörensson. Temporal induction by incremental SAT solv-
ing. In Proc. Bounded Model Checking, 2003.

[Fil91] T. Filkorn. A method for symbolic verification of synchronous circuits. In
Proc. Int’l Symp. Computer Hardware Description Languages and their
Applications, pages 249–259, 1991.

[Fil92] T. Filkorn. Symbolische methoden für die verifikation endlicher zus-
tandssysteme. Ph.D. dissertation, Institut für Informatik der Technischen
Universität München, 1992.

[FKS05] M. Fujita, S. Komatsu, and H. Saito. Formal verification techniques for
digital systems. In H.B. Diab, S. Hassoun, and A.Y. Zomaya, editors,
Dependable Computing Systems. J. Wiley, 2005.

[GDDB00] W. Guenther, N. Drechsler, R. Drechsler, and B. Becker. Verification of
designs containing black boxes. In EUROMICRO, pages 100–105, 2000.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[GN02] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In
Proc. Design Automation and Test in Europe, pages 142–149, 2002.

[Gos93] J. B. Gosling. Simulation in the Design of Digital Electronic Systems.
Cambridge University Press, 1993.

[HCC+00] S.-Y. Huang, K.-T. Cheng, K.-C. Chen, C.-Y. Huang, and F. Brewer.
Aquila: An equivalence checking system for large sequential designs. IEEE
Trans. Computers, 49(5):443–464, 2000.

[Hop71] J. Hopcroft. An n log n algorithm for minimizing states in a finite au-
tomaton. In Z. Kohavi and A. Paz, editors, Theory of Machines and
Computations, pages 189–196, New York, 1971. Academic Press.

[HS66] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential
Machines. Prentice-Hall, 1966.

[HS97] S. Hazelhurst and C.-J. Seger. Symbolic trajectory evaluation. In
T. Kropf, editor, Formal Hardware Verification, volume 1287 of Lecture
Notes in Computer Science, pages 3–78. Springer, 1997.

[HWA99] H. Hulgaard, P. F. Williams, and H. R. Andersen. Equivalence check-
ing of combinational circuits using boolean expression diagrams. IEEE
Transactions on Computer-Aided Design, 18(7):903–917, 1999.

[Imm88] N. Immerman. Nondeterministic space is closed under complementation.
SIAM J. Comput., 17(5):935–938, 1988.

[JB03] J.-H. Jiang and R. Brayton. On the verification of sequential equivalence.
IEEE Trans. Computer-Aided Design, 6:686–697, 2003.

[JB04] J.-H. Jiang and R. Brayton. Functional dependency for verification reduc-
tion. In Proc. Int’l Conf. on Computer Aided Verification, pages 268–280,
2004.

[JB06] J.-H. Jiang and R. Brayton. Retiming and resynthesis: A complexity
perspective. IEEE Trans. Computer-Aided Design, 2006. to appear.

[JBM+00] A. Jain, V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and M. Hsiao.
Testing, verification, and diagnosis in the presence of unknowns. In VLSI
Test Symposium, pages 263–269, 2000.

[JH07] J.-H. R. Jiang and W.-L. Hung. Inductive equivalence checking under
retiming and resynthesis. In Proc. Int’l Conference on Computer-Aided
Design, pages 326–333, 2007.

[JNFSV97] J. Jain, A. Narayan, M. Fujita, and A. Sangiovanni-Vincentelli. A survey
of techniques for formal verification of combinational circuits. In The

73

Proceedings of the International Conference on Computer Design, pages
445–454, 1997.

[KB02] W. Kunz and A. Biere. SAT and ATPG: Boolean engines for formal
hardware verification. In The Proceedings of the International Conference
on Computer-Aided Design, pages 782–785, November 2002.

[KK97] A. Kuehlmann and F. Krohm. Equivalence checking using cuts and heaps.
In Proc. Design Automation Conference, pages 263–268, 1997.

[KMSM01] W. Kunz, J. Marques-Silva, and S. Malik. SAT and ATPG: Algorithms
for boolean decision problems. In R. Brayton, S. Hassoun, and T. Sasao,
editors, Logic Synthesis and Verification, pages 309–341. Kluwer, 2001.

[Koh78] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, 1978.
[KPKG02] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai. Robust boolean

reasoning for equivalence checking and functional property verification.
IEEE Transactions on Computer-Aided Design, 21(12):1377–1394, 2002.

[Kra97] J. Kraj́ıček. Interpolation theorems, lower bounds for proof systems, and
independence results for bounded arithmetic. Journal of Symbolic Logic,
62(2):457–486, 1997.

[Kur94] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes.
Princeton University Press, 1994.

[KvE01] A. Kuehlmann and C.A.J. van Eijk. Combinational and sequential equiv-
alence checking. In R. Brayton, S. Hassoun, and T. Sasao, editors, Logic
Synthesis and Verification, pages 343–372. Kluwer, 2001.

[Lam05] W. K. C. Lam. Hardware Design Verification: Simulation and Formal
Method-Based Approaches. Prentice Hall Professional Technical Refer-
ence, 2005.

[LJHM07] C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, and A. Mishchenko. Scalable
exploration of functional dependency by interpolation and incremental
SAT solving. In Proc. Int’l Conference on Computer-Aided Design, pages
227–233, 2007.

[LN91] B. Lin and A. R. Newton. Implicit manipulation of equivalence classes
using binary decision diagrams. In ICCD, pages 81–85. IEEE Computer
Society, 1991.

[LS83] C. Leiserson and J. Saxe. Optimizing synchronous systems. Journal of
VLSI and Computer Systems, 1(1):41–67, 1983.

[LS91] C. Leiserson and J. Saxe. Retiming synchronous circuitry. Algorithmica,
6:5–35, 1991.

[MCJB05] A. Mishchenko, S. Chatterjee, J.-H. R. Jiang, and R. Brayton. FRAIGs:
A unifying representation for logic synthesis and verification. Technical
report, Electronics Research Laboratory, University of California, Berke-
ley, March 2005.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[McM02] K. McMillan. Applying SAT methods in unbounded symbolic model
checking. In Proc. Computer Aided Verification, pages 250–264, 2002.

[McM03] K. McMillan. Interpolation and SAT-based model checking. In Proc.
Computer Aided Verification, pages 1–13, 2003.

[Mic03] A. Miczo. Digital Logic Testing and Simulation. J. Wiley, 2003.
[MMZM01] M. Moskewicz, C. Madigan, L. Zhang, and S. Malik. Chaff: Engineering

an efficient SAT solver. In Proc. Design Automation Conference, pages
530–535, 2001.

74

[MS05] M. Mneimneh and K. Sakallah. Principles of sequential-equivalence veri-
fication. IEEE Design & Test of Computers, pages 248–257, 2005.

[MSS99] J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for propo-
sitional satisfiability. IEEE Trans. on Computers, 48(5):506–521, 1999.

[NS04] T. Nopper and C. Scholl. Approximate symbolic model checking for in-
complete designs. In FMCAD, pages 290–305, 2004.

[PG86] D. Plaisted and S. Greenbaum. A structure preserving clause form trans-
lation. Journal of Symbolic Computation, 2:293–304, 1986.

[PHS94] B. Plessier, G. Hachtel, and F. Somenzi. Extended BDDs: trading off
canonicity for structure in verification algorithms. Form. Methods Syst.
Des., 4(2):167–185, 1994.

[Pil98] L. Pillage. Electronic Circuit and System Simulation Methods (SRE).
McGraw-Hill, 1998.

[PJH94] C. Pixley, S. Jeong, and G. Hatchel. Exact calculation of synchronization
sequences based on binary decision diagrams. IEEE Trans. Computer-
Aided Design, 13:1024–1034, 1994.

[PT87] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM
Journal of Computing, 16(6):973–989, 1987.

[Pud97] P. Pudlák. Lower bounds for resolution and cutting plane proofs and
monotone computations. Journal of Symbolic Logic, 62(2):981–998, 1997.

[QCC+00] S. Quer, G. Cabodi, P. Camurati, L. Lavagno, E. Sentovich, and R. K.
Brayton. Verification of similar FSMs by mixing incremental re-encoding,
reachability analysis, and combinational checks. Formal Methods in Sys-
tem Design, 17(2):107–134, 2000.

[Rob65] J. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, 1965.

[RRT04] S. Rahim, B. Rouzeyre, and L. Torres. A flip-flop matching engine to
verify sequential optimizations. Computing and Informatics, 23(5-6):437–
460, 2004.

[RRTR03] S. Rahim, B. Rouzeyre, L. Torres, and J. Rampon. Matching in the
presence of don’t cares and redundant sequential elements for sequential
equivalence checking. In HLDVT ’03: Proceedings of the Eighth IEEE
International Workshop on High-Level Design Validation and Test Work-
shop, page 129, Washington, DC, USA, 2003. IEEE Computer Society.

[Rud93] R. Rudell. Dynamic variable ordering for binary decision diagrams. In
Proc. Int’l Conference on Computer-Aided Design, pages 42–47, 1993.

[Sav70] W. J. Savitch. Relationships between nondeterministic and deterministic
space complexities. Journal of Computer and System Sciences, 4(2):177–
192, 1970.

[SB01] C. Scholl and B. Becker. Checking equivalence for partial implementa-
tions. In DAC, pages 238–243, 2001.

[SB02] C. Scholl and B. Becker. Checking equivalence for circuits containing
incompletely specified boxes. In ICCD, pages 56–63, 2002.

[SB04] V. Schuppan and A. Biere. Efficient reduction of finite state model check-
ing to reachability analysis. Int’l Journal on Software Tools for Technology
Transfer (STTT), 5(2-3), 2004. Springer.

[SFVD05] S. Safarpour, G. Fey, A. Veneris, and R. Drechsler. Utilizing don’t care
states in SAT-based bounded sequential problems. In GLSVSLI ’05: Pro-
ceedings of the 15th ACM Great Lakes symposium on VLSI, pages 264–
269, New York, NY, USA, 2005. ACM Press.

75

[SM73] L. Stockmeyer and A. Meyer. Word problems requiring exponential time.
In Proc. ACM Symposium on the Theory of Computing, pages 1–9, 1973.

[SP94] V. Singhal and C. Pixley. The verification problem for safe replaceability.
In Proc. Computer Aided Verification, pages 311–323, 1994.

[SPAB95] V. Singhal, C. Pixley, A. Aziz, and R. Brayton. Exploiting power-up
delay for sequential optimization. In Proc. European Design Automation
Conference, pages 54–59, 1995.

[SSS00] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using
induction and a SAT-solver. In Proc. Formal Methods in Computer-Aided
Design, 2000.

[Sze88] R. Szelepcsenyi. The method of forced enumeration for nondeterministic
automata. Acta Inf., 26(3):279–284, 1988.

[Tam93] T. Tamisier. Computing the observable equivalence relation of a finite
state machine. In ICCAD ’93: Proceedings of the 1993 IEEE/ACM inter-
national conference on Computer-aided design, pages 184–187, Los Alami-
tos, CA, USA, 1993. IEEE Computer Society Press.

[Tar55] A. Tarski. A lattice-theoretic fixpoint theorem and its applications. Pa-
cific Journal of Mathematics, 5:285–309, 1955.

[Tse70] G. Tseitin. On the complexity of derivation in propositional calculus.
Studies in Constructive Mathematics and Mathematical Logic, pages 466–
483, 1970.

[TSL+90] H. Touati, H. Savoj, B. Lin, R. Brayton, and A. Sangiovanni-Vincentelli.
Implicit enumeration of finite state machines using BDDs. In Proc. Int’l
Conference on Computer-Aided Design, pages 130–133, 1990.

[vE00] C. A. J. van Eijk. Sequential equivalence checking based on structural
similarities. IEEE Trans. Computer-Aided Design, 19(7):814–819, 2000.

[vEJ95] C. A. J. van Eijk and J. A. G. Jess. Detection of equivalent state variables
in finite state machine verification. In Proc. Int’l Workshop on Logic
Synthesis, 1995.

[WKS01] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental
satisfiability engine. In Proc. Design Automation Conference, pages 542–
545, 2001.

[Zha97] H. Zhang. SATO: An efficient propositional prover. In Proc. Int’l Conf.
on Automated Deduction, pages 272–275, 1997.

[ZKP00] B. P. Zeigler, T. G. Kim, and H. Praehofer. Theory of Modeling and
Simulation. Academic Press, 2000.

