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1 Boolean Networks

1.1 Introduction

Two-level logic minimization has been a success story both in terms of theoretical understanding and
availability of practical tools (like espresso) [2, 37, 30, 14]. However, two-level logic is not suitable
to implement large Boolean functions, whereas multi-level implementations allow to trade-off area
and delay. Multi-level logic synthesis has the objective to explore multi-level implementations
guided by some function of the following metrics:

1. the area occupied by the logic gates and interconnect (eg., approximated by literals, which
correspond to transistors in technology-independent optimization).

2. the delay of the longest path through the logic.

3. the testability of the circuit, measured in terms of the percentage of faults covered by a
specified set of test vectors, for an appropriate fault model (eg., single stuck faults, multiple
stuck faults, etc.).

4. the power consumed by the logic gates and wires.

Often good implementations must satisfy simultaneously upper or lower constraints placed on these
parameters and look for good compromises among the cost functions.

It is common to classify optimization as technology-independent vs. technology-dependent,
where the former represents a circuit by a network of abstract nodes, whereas the latter represents a
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circuit by a network of the actual gates available in a given library or programmable architecture. A
common paradigm is to try first technology-independent optimization and then map the optimized
circuit into the final library (technology mapping). In some cases it has been found advantageous to
iterate this process; then it is called technology semi-independent optimization. The fact of splitting
multi-level optimization in two steps has been suggested by the complexity of the problem, but pays
the penalty of selecting sub-optimal solutions. It must be said that, contrary to the two-level and
three-level cases, there is no established theory of optimum multi-level implementations, so here
we are in the domain of heuristics.

Example 1.1 Given the specification

w = ab + ab

if w then z = cd + ad;u = cd + ad + e(f + b)

else z = e(f + b);u = (cd + ad)e(f + b)

A straighforward multi-level implementation is:

w = ab + ab

z = w(cd + ad) + we(f + b)

u = w(cd + ad + e(f + b)) + w(cd + ad)e(f + b)

A more succinct multi-level implementation is:

w = ab + ab

t = cd + ad

s = e(f + b)

z = wt + ws

u = w(t + s) + wts

Interesting work on the efficient decomposition of Boolean functions into networks of digital
gates had been carried on since the sixties [29, 19, 44, 22, 18]. But it was only in the eighties that
a combination of more powerful theory and computers gave wings to the field, culminating in the
development of modern logic synthesis packages, often originated in academia and then engineered
into industrial tools by a number of Electronic Design Automation (EDA) companies. The first
industrially employed logic synthesis tool was LSS [17, 15, 16], developed at IBM and based on
local transformations. A pioneering package from academia was MIS [4, 5], developed at Berkeley
in the mid eighties. Two students who played a pivotal role in the theory and implementation of
MIS were R. Rudell [38, 6] and A. Wang [43, 6, 21], who then joined a successful start-up in EDA.
In parallel a research group at the University of Colorado, Boulder led by G. Hachtel developed the
package BOLD [1]. A few years later a Berkeley team developed SIS [39, 40], a more advanced
and complete package (including also sequential synthesis), which became the de-facto standard for
comparing algorithms in multi-level logic synthesis. The current champion is the package ABC [41]
developed at UCB, by a team whose main architect is A. Mishchenko; ABC achieves high scalability
by using FRAIGs, i.e., a representation based on functionally reduced two-input AND gates and
inverters [35].
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In this chapter we will provide a rigorous survey of the basics of modern multi-level logic
synthesis, developed since the beginning of the eighties under the influence of seminal papers on
factoring and division by R. Brayton and C. McMullen, at the IBM Yorktown Research Labs [3, 8, 7].
We will describe first the setting of the problem based on the abstraction of a Boolean network
and on factored forms of Boolean functions. Then we will describe Boolean division, for completely
specified and incompletely specified Boolean functions, and heuristic algorithms to perform it. Next
we will describe algebraic division, introducing weak algebraic division, and we will discuss how to
find common algebraic divisors by restricting the search to kernels and other subsets of divisors.
Finally we will show how division can be the engine of the main operations to restructure a Boolean
network, namely factoring, decomposition, substitution and extraction.

Textbook expositions of multi-level logic synthesis can be found in [33, 24, 20, 23].

1.2 Network Representation

Let us consider the network representation first. A model used in multi-level logic synthesis is
a network of nodes that are single-output functions, where each node is abstracted as a sum-of-
products or a factored form.

Definition 1.1 A Boolean network is a three-tuple N = (V,E, f ), consisting of a directed acyclic
graph (DAG) G = (V,E) and a collection of logic functions f .

The set of nodes is V = V I ∪ V int ∪ V O, where V I is the set of source nodes, V int is the set
of internal nodes, V O is the set of sink nodes. There may be an arc from any node in V I to any
node in V int, and from any node in V int to any node in V int, as long as the graph is acyclic. For
every node in V O there is a unique node in V int from which there is an arc to it. The network is
characterized as follows:

1. A primary input xi, i = 1, . . . ,m is associated to each node i ∈ V I , i = 1, . . . ,m.

2. An internal variable yi, i = 1, . . . , n and a representation of a completely specified logic func-
tion fi, i = 1, . . . , n are associated to each internal node i ∈ V int, i = 1, . . . , n. It holds that
yi = fi(yi1 , . . . , yin , xi1 , . . . , xim), i = 1, . . . , n, where yi1, . . . , yin are the internal variables as-
sociated to internal nodes for which there is arc to node i, and where xi1, . . . , xim are the
primary inputs associated to source nodes from which there is arc to node i.

3. A primary output zi, i = 1, . . . , p and a completely specified output function fi, i = n +
1, . . . , n + p are associated to each node i ∈ V O, i = 1, . . . , p. It holds that fi = fk, where fk

is the function associated to the unique internal node k from which there is an arc to node i.

The set of primary inputs is represented by the vector of variables x = (x1, . . . , xm). The set of
internal variables is represented by the vector of variables y = (y1, . . . , yn). The set of primary
outputs is represented by the vector of variables z = (z1, . . . , zp). The set of functions is represented
by the vector of functions f = (f1, . . . , fn, fn+1, . . . , fn+p)

There is an external don’t care set associated to the primary outputs and represented by the
vector of completely specified functions d = (d1(x), . . . , dp(x)), where di(x) = 1 if and only the
primary output zi under input x is unspecified, i.e., it may be either 0 or 1.

Notice that if x is a don’t care for the primary output zi, it means that we are free to synthesize
a network that computes either value, choosing the one that makes the implementation more cost-
effective.
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Definition 1.2 A literal is a variable or its complement, e.g., x or x. A cube is a set C of
literals,, e.g., in set notation {x, y, z}; a cube represents the conjunction of its literals, e.g., xyz.
An expression or cover F is a set of cubes, e.g., in set notation {{x}, {x, y, z}}; an expression
represents the disjunction of its cubes, also called Sum-Of-Product(SOP), e.g., x + xyz.

Definition 1.3 The support of an expression F , sup(F ), is the set of variables that appear in F ,
i.e.,

sup(F ) = {x | ∃ cube C such that x ∈ C or x ∈ C }.

For example sup(xy + xz) = {x, y, z}.

Definition 1.4 Two expressions F and G are orthogonal, F⊥G, if they have disjoint support,
i.e., sup(F ) ∩ sup(G) = ∅.

Definition 1.5 A node j is a fanin node of a node i if function fi depends on variable yj explicitly,
i.e., there is an arc from j to i. The set of all fanins of a node i is denoted by

FI(i) =

{
∅ i is a primary input
{j | j ∈ sup(i)} otherwise

Definition 1.6 The transitive fanin of a node i, denoted by TFI(i), is defined recursively as:

TFI(i) =

{
∅ i is a primary input
FI(i) ∪

⋃
j∈FI(i) TFI(j) otherwise

Definition 1.7 A node j is a fanout node of a node i if function fj depends on variable yi

explicitly, i.e., there is an arc from i to j. The set of all fanouts of a node i is denoted by

FO(i) =

{
∅ i is a primary output
{j | i ∈ sup(j)} otherwise

Definition 1.8 The transitive fanout of a node i, denoted by TFO(i), is defined recursively as:

TFO(i) =

{
∅ i is a primary output
FO(i) ∪

⋃
j∈FO(i) TFO(j) otherwise

An example of Boolean network is given in Fig. 2.
The given notion of Boolean network is abstract enough that it can be used both for technology-

independent and technology-dependent representations. What makes the difference is the type of
node representation. Nodes may be abstract functions of many sorts in a technology-independent
representation, whereas they are valid gates from a library in a technology-dependent representa-
tion. In the former case nodes may be classified as follows:

• General node: each node is the representation of an arbitrary logic function, then a theory is
easier to develop since there are no arbitrary restrictions dependent on the technology. This
is the choice of sis, with the restriction that, in sis, nodes must be single-output with the
following possibile choices of function representation:

– Sum-of-products form
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x1 x2 xm−1 xm

. . .

yj = fj(. . . , yi, . . . )

z1 . . .z2

. . .. . .

zpzp−1

yi

fj

Figure 1: Structure of a Boolean network. External inputs are x1, . . . , xm; external outputs are
y1, . . . , yp. A node fj with output signal yj computes the function yj = fj(yj1 , . . . , yjn

, xj1 , . . . , xjm
),

where some local inputs may be external inputs.

– Factored form

– Binary decision diagram (BDD)

• Generic node: every node in the network is a simple generic node, like a 2-input NAND gate;
some manipulations are much faster using this structure, but the network is finely decomposed
in a particular way, and some natural structures may be lost. Recently, And-Invertor-Graphs
(AIGs) have seen increasingly more use [28, 34].

• Discrete node. A node can be one of a small set of logic functions, such as AND, OR, NOT,
DECODE, ADD or other complex blocks of logic manipulated as a single unit, allowing also
multiple output nodes; it is used mostly in rule-based systems and a theory for such networks
seems more difficult.

In the sequel we will develop technology-independent multi-level optimization based on general
nodes represented as in sis by Sum-Of-Products (SOPs) and factored forms. SOPs are easy to
manipulate and there are many algorithms for their minimization, spawned by a rigorous theory of
optimum two-level forms. However, their main disadvantage is that they do not represent reliably
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x1 x2 x3

z1

y1 y2

y3

Figure 2: An example of Boolean network. The nodes compute the following functions: y1 = x1x2,
y2 = x3, y3 = y1y2, z1 = y3 + x3.

the logic complexity of a function. Consider

f = ad + ae + bd + be + cd + ce

f = abc + de

These differ in their implementation only by one invertor, but their SOPs differ by many products
and literals. So SOPs are not a good estimator of progress during logic minimization.

For ROBDDs we refer to another chapter in the same collection. Here it suffices to say that they
represent a function and its complement with the same complexity, like factored forms; however they
are not a good estimator for the complexity of implementation, because they are effectively networks
of muxes restricted to be controlled by primary input variables. BDDs are a good replacement for
truth tables, because they are canonical for a given ordering, and operations on them are well
defined and efficient, with true support (dependency) exposed explicitly. Finding the best ordering
is a difficult problem; moreover, there are functions like multipliers for which there is no ordering
that yields a small BDD.

As it will be seen soon in the formal definition, factored forms are recursively defined as sums
or products of factored forms down to the terminal cases of single literals. An example of factored
form is: (ab+bc)(c+d(e+ac))+(d+e)(fg). Factored forms represent a function and its complement
with the same complexity:

f = ad + ae + bd + be + cd + ce

f = abc + de
f = (a + b + c)(d + e)

They are good estimators of complexity of logic implementation and do not blow up easily; in
many design styles the implementation of a function corresponds directly to its factored form (e.g.,
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complex-gate CMOS, where factored form literal count correlates to transistor count that correlates
to area, but area depends on wiring too). A disadvantage is that there are not as many algorithms
available for manipulation, hence usually they must be converted into SOPs before operating on
them.

1.3 Factored Forms

Definition 1.9 An algebraic expression F is a sum of products representation of a logic function
which is minimal with respect to single cube containment, i.e., such that every proper subset of F
represents another function than F .

Example 1.2 ab + cd is an algebraic expression, but a + ab and ab + abc + cd are not algebraic
expressions (e.g., a + ab is ruled out because factoring would yield a(1 + b), where the 1 indicates
single-cube containment).

Definition 1.10 The product of two expressions F and G is a set defined by

FG = {cd | c ∈ F and d ∈ G and cd 6= ∅}.

Example 1.3 (a + b)(ce + d + a) = ace + ad + bce + bd + ab.
The result is not necessarily an algebraic expression, e.g., (a + b)(a + c) = aa + ac + ab + bc.

Definition 1.11 FG is an algebraic product if F and G are algebraic expressions and have
disjoint support (that is, they have no input variables in common), otherwise it is a Boolean

product.

Example 1.4 (a + b)(c + d) = ac + ad + bc + bd is an algebraic product, but (a + b)(a + c) =
aa + ac + ab + bc is a Boolean product.

Lemma 1.1 The algebraic product of two expressions F and G is an algebraic expression.

Proof. By contradiction. Suppose there exists cidj ⊆ ckdl for some i, j, k, l, with either i 6= k or
j 6= l. Since sup(F ) ∩ sup(G) = ∅, then ci ⊆ ck and dj ⊆ dl, against the hypothesis that F and G
are algebraic expressions. 2

A factored form is a parenthesized expression.

Definition 1.12 A factored form can be defined recursively by the following rules:

A factored form is either a product or a sum where:

• A product is either a single literal or a product of factored forms.

• A sum is either a single literal or a sum of factored forms.

In effect, a factored form is a product of sums of products of . . . or a sum of products of sums of
. . . factored forms.

Any logic function can be represented by a factored form and any factored form is a representation
of some logic function.
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Example 1.5

• Examples of factored forms are:

x
y
abc

a + bc

((a + b)cd + e)(a + b) + e

• The following is not a factored form, because complemention is not allowed, since complements
are allowed only on literals:

(a + b)c

• The following are three equivalent factored forms (factored forms are not unique):

ab + c(a + b)
bc + a(b + c)
ac + b(a + c)

Definition 1.13 The factorization value of an algebraic factorization F = G1G2 + R is defined
to be

fact val(F,G2) = lits(F )− (lits(G1) + lits(G2) + lits(R))

= (| G1 | −1)lits(G2) + (| G2 | −1)lits(G1)

assuming G1, G2, and R are algebraic expressions. Here, for any algebraic expression P , lits(P ) =
number of literals in SOP form of P , and | P | is the number of products of the SOP P .

The factorization value is the number of literals saved by doing one level of factoring. It is important
that the expressions are algebraic.

Example 1.6 The algebraic expression

F = ae + af + ag + bce + bcf + bcg + bde + bdf + bdg

can be expressed in the factored form

F = (a + b(c + d))(e + f + g)

Note that only 7, rather than 24 literals are required.
If G1 = (a+bc+bd), and G2 = (e+f+g), then R = ∅, and fact val(F,G2) = (2)(3)+(2)(5) = 16.

Note that the given factored form saved 17, rather than 16 literals. The extra literal that was saved
comes from recursively applying the formula to the factored form of G1.

The following facts are true:
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• Factored forms are more compact representations of logic functions than the traditional sum-
of-products forms. For example, the following factored form has 10 literals

(a + b)(c + d(e + f(j + i + h + g)))

but when represented as a sum-of-products form it requires 42 literals

ac + ade + adfg + adfh + adfi + adfj + bc + bde + bdfg + bdfh + bdfi + bdfj

• Every sum-of-products form can be viewed as a factored form.

When measured in terms of number of inputs, there are functions whose size is exponential in
sum-of-products forms, but polynomial in factored forms.

Example 1.7 Consider the Achilles’ heel function represented as product-of-sums:

i=n/2∏

i=1

(x2i−1 + x2i).

There are n literals in the factored form and (n/2)×2n/2 literals in the sum-of-products form. Fac-
tored forms are useful in estimating area and delay in a multi-level logic synthesis and optimization
system.

In most design styles (for example, complex-gate CMOS design) the implementation of a func-
tion corresponds directly to its factored form.

Factored forms can also be graphically represented as labeled trees, called factoring trees, in
which each internal node including the root has a label of either “+” (or “∨”) for disjunction, or
“∗” for conjunction, and each leaf has a label of either a variable or its complement.

Example 1.8 Fig. 3 shows the computation tree of the factored form ((a + b)cd + e)(a + b) + e.

Definition 1.14 The size of a factored form F (denoted ρ(F )) is the number of literals in the
factored form. A factored form is optimum if no other equivalent factored form has fewer literals.

Example 1.9 ρ((a + b)ca) = 4 and ρ((a + b + cd)(a + b)) = 6.

Definition 1.15 A factored form F is positive unate in x if x appears in F but x does not.
A factored form F is negative unate in x if x appears in F and x does not.
A factored form F is unate in x if it is either positive unate or negative unate in x.
A factored form F is binate in x if it is not unate in x.

Example 1.10 (a + b)c + a is positive unate in c, negative unate in b and binate in a.

Definition 1.16 The cofactor of a factored form F with respect to a literal x1 (or x1) is the
factored form Fx1

= F |x1=1(x) (or Fx1
= F |x1=1(x)) obtained by

1. replacing all occurrences of x1 with 1 and all occurrences of x1 with 0, and
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a

d

e

+

+

∗

y2

y1

y3 y4

y5

y6

+

∗

+

b

c

a

b

e

Figure 3: Factoring tree from Example 1.8. It represents the function y6 = ((a+b)cd+e)(a+b)+e.

2. simplifying the factored form using the following identities of Boolean algebra:

1x = x
1 + x = 1

0x = 0
0 + x = x

The cofactor of a factored form F with respect to a cube c is a factored form, denoted by Fc, obtained
by successively cofactoring F with respect to each literal in c.

After constant propagation (all constants are removed), part of the factored form may appear as
G + G. In general, G is another factored form. In fact, the two Gs may have different factored
forms. Identifying these equivalent factored forms to apply the simplification G + G = G is a
non-trivial task.

Example 1.11 Let F = (x + y + z)(xu + zy(v + u)) and c = vz. Then

Fz = (x + y)(xu + y(v + u))
Fc = (x + y)(xu + y)
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Note that cofactoring does not preserve algebraic expressions: F = abc + bcd, Fa = bc + bcd.
Sum-of-products forms are used as the internal representation of logic functions in most multi-

level logic optimization systems. The advantage is that good algorithms for manipulating SOPs
are available. Disadvantages are twofold:

1. The quality of solutions of SOP algorithms is unpredictable: they may accidentally generate
a function whose sum-of-products form is too large.

2. Factoring algorithms have to be used constantly to provide an estimate for the size of the
Boolean network, so that time spent when factoring may become significant; therefore there
is a need of quick but still good factoring methods.

A possible solution to overcome the disadvantages is to avoid sum-of-products forms by using
factored forms as internal representation. However this is not practical, unless we know how to
perform logic operations on the factored forms directly without converting them to sum-of-products
forms. Extensions to factored forms of the most common logic operations have been partially
provided, but more research is needed.

1.4 Incompletely Specified Boolean Functions

Definition 1.17 An incompletely specified function F = (f, d, r) : Bn → {0, 1, ⋆} (⋆ stands for
don’t care value) is a triple of completely specified Boolean functions f , d and r, respectively the
onset, don’t care and offset functions; i.e, f(x) = 1 if and only if F(x) = 1, d(x) = 1 if and only
if F(x) = ∗, r(x) = 1 if and only if F(x) = 0, where f, d, r are a partition of Bn, i.e., they are
disjoint and together they cover all of Bn. When the don’t care function d is empty, we have a
completely specified Boolean function.

An equivalent view is to say that an incompletely specified function F = (f, d, r) is a collection
of completely specified functions g such that f ⊆ g ⊆ f ∨ d. A cover for such a g (i.e., a SOP
expression representing g) is said to be a cover of F = (f, d, r), and sometimes - with slight abuse
of notation - g itself is said to be a cover of F = (f, d, r).

For minimization of incompletely specified Boolean functions there is a huge literature [37] and
there are practical software packages [2]. Often in the text we will refer to applying minimization
to functions associated to nodes of a Boolean network, e.g., the operation minimize (a.k.a. sim-
plification or simplify), or minimize with don’t cares, the latter when we underline that there is a
non-empty don’t care function d. Since each node has - among others - a representation of the
associated function as a SOP, by minimization we mean applying any technique that will reduce
the number of product terms and literals of the expression representing the function. According
to the context and the practical requirements, we may be interested only to a light minimization,
for instance at least ensuring that the final cover has no single-cube containment, or that it is an
irredundant cover (no cube can be removed without uncovering at least a point of the onset), or to
an absolute minimum. In practice often we are interested to an irredundant cover (minimal cover,
which is a local optimum) as it can be obtained by the program espresso when run in the heuristic
mode. In pseudo-code descriptions we may denote a call to espresso with a pseudo-instruction like
espresso(F,D,R), where F , D and R are respectively covers of the onset, don’t care set and offset
of the function to be minimized.
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1.5 Manipulation of Boolean Networks

The basic techniques to restructure Boolean networks can be summarized as:

• Structural operations (they change the topological structure of the network), divided as:

– Algebraic

– Boolean

• Node simplification (they change the functions of nodes)

– Computation of don’t cares due 1) to the dependencies that the network topology im-
poses to the fanin signals (satisfiability or controllability don’t cares), and 2) to the
limited sensitivity of the outputs to vectors of inputs and internal nodes (observability
don’t cares)

– Node minimization by exploiting the computed don’t cares

• Phase assignment of the internal and output signals.

Given an initial network, the restructuring problem is to find the best network. In this chapter,
for lack of space, we will discuss almost only structural operations.

Example 1.12 Given the functions f1 and f2, we apply to them the operations minimize (node
minimization performed by an algorithm like in espresso [2]), factor and decompose, whose
precise meaning we will discuss later.

f1 = abcd + abce + abcd + abcd + abcd + ac + cdf

+abcde + abcdf

f2 = bdg + bdfg + bdg + bdeg

minimize:

f1 = bcd + bce + bd + bf + ac + abcde + abcdf

f2 = bdg + dfg + bdg + deg

factor:

f1 = c(b(d + e) + b(d + f) + a) + ac(bde + bdf)

f2 = g(d(b + f) + d(b + e))

decompose:

f1 = c(a + x) + acx

f2 = gx

x = d(b + f) + d(b + e)

The basic structural operations which can be used to change the internal topology of a Boolean
network are now briefly introduced on the basis of examples only. Operative definitions can be found
in the manual of the multi-level synthesis package sis [39]. Detailed definitions and descriptions
will be given in the follow-up of the chapter, and especially in Sec. 5.
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Example 1.13 The following steps show the application of basic operations to restructure Boolea
networks:

1. Decomposition of a single function

f = abc + abd + acd + bcd
⇓

f = xy + xy
x = ab
y = c + d

2. Extraction, i.e., decomposition of multiple functions

f = (az + bz)cd + e
g = (az + bz)e
h = cde
⇓

f = xy + e
g = xe
h = ye
x = az + bz
y = cd

3. Factoring, i.e., series-parallel decomposition

f = ac + ad + bc + bd + e
⇓

f = (a + b)(c + d) + e

4. Substitution, i.e., making the value of a function available into another function

g = a + b
f = a + bc
⇓

f = g(a + c)

5. Collapsing (also called elimination), i.e., replacing a function by its expression

f = ga + gb
g = c + d
⇓

f = ac + ad + bcd
g = c + d

In general, “elimination” is a term that we will use for partial collapsing.

Comparing factoring vs. decomposition, the former is restricted to a series-parallel graph re-
structuring of the given function, whereas the latter may produce a non-tree structure, so it is
similar to BDD collapsing of common nodes and using negative pointers. But decomposition is not
canonical, so there is not a perfect identification of common nodes.
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We introduce next the value of a node to define a cost function that measures the effect of an
operation to restructure a Boolean network. The value of a node is the difference in literal cost of
the network without the node (node eliminated or no factoring) and with the node (node factored
out). Given node j, let ni be the number of times that literal yj and/or yj appears in the factored
network and let lj be the number of literals in the factored form of node j (we can treat yj and yj

as the same since ρ(fj) = ρ(f j)); moreover, let c be the cost of the rest of the nework. The literal
cost of the network without the node (elimination, no factoring) is

lj
∑

i∈FANOUT (j)

ni + c,

and the literal cost of the network with the node (no elimination, factoring) is

lj +
∑

i∈FANOUT (j)

ni + c.

Their difference (cost change due to elimination) is

value(j) = (lj
∑

i∈FANOUT (j)

ni + c)− (lj +
∑

i∈FANOUT (j)

ni + c) = ((
∑

i∈FANOUT (j)

ni)− 1)(lj − 1)− 1.

Example 1.14 Fig. 4(a) shows a network fragment before elimination of literal cost 5+7+5+c =
17+ c, and Fig. 4(b) shows the same network fragment after elimination of literal cost 9+15+ c =
24 + c, for a difference of 24 + c − (17 + c) = 7 that is exactly what the formula value(node3) =
(1 + 2− 1)(5 − 1)− 1 computes, given n1 = 1, n2 = 2, l3 = 5.

The value might be different if we were to eliminate, simplify, and then refactor. Fig. 5(a) shows
a network fragment with values annotated for nodes l,m, n, Fig. 5(b) shows the value of node n after
eliminate −1 of nodes l and m. For instance, in (a) value(l) = −1, because the network without
node l has value less by 1 of the network with node l; in (b) node n has value 3 because the value of
the network with node n is 18+c and with node n is 15+c, whose difference is 18+c−(15+c) = 3.
In general the operation eliminate x eliminates all the nodes whose removal does not increment the
value of the network by more than x. The special case eliminate −1 eliminates the nodes whose
removal decreases the value of the network by at least 1, and in particular it removes nodes that are
used only once (as it can be verified by the formula accounting for the value). Order of elimination
may be important.

Note that “Division” plays a key role in all of these operations. Their essence can be abstracted
as addressing the following two problems:

1. Find good common subfunctions.

2. Effect the division.

In the next section we will survey techniques to solve them.
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i2

j

yj yj

yj

i1 i3

(a)

(c)

(b)

y3

node1

node3

node1

y3

node2

...

...

...

...

node2

f2 = y3(ab + ab)

f3 = ac + aby

f1 = a + (ac + aby)(y + z) + bd(a + c)(a + b + y)

f2 = (ac + aby)(ab + ab)

f1 = a ∨ y3(y ∨ z) + y3bd

Figure 4: Illustration of Example 1.14. (a) Fragment of a Boolean network before elimination; (b)
The same fragment after elimination; (c) A node j with lj literals whose output fans out as wire
yj to nodes i1, i2, i3.

fl = d + el

m

n

p p

fm = cl + f

fn = am fn = a(c(d + e) + f)
value(n) = 0

value(l) = −1

value(m) = −1

(a) (b)

fp = b(n + ag) + h fq = i(n + aj) + k

n

qq

value(n) = 3

Figure 5: Illustration of Example 1.14. (a) Fragment of a Boolean network with some node values;
(b) The same fragment after elimination of nodes with negative value.
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2 Boolean Division

Division is central in the operations to restructure a Boolean network. To be able to perform it,
we must investigate the following questions:

1. What is it (in the context of Boolean functions) ?

2. How to divide?

3. What to divide with?

4. How to apply it to restructure a network, e.g., in factoring, resubstitution, extraction ?

Definition 2.1 A Boolean function g is a divisor of a Boolean function f if there exist Boolean
functions h and r such that f = gh + r, with gh 6= ∅. In this case, h is called a quotient and r is
called a remainder of the division of f by g. Note that h and r may not be unique.

The function g is said to be a factor of f if in addition r = ∅, i.e., if f = gh.

We provide algorithms for division when the functions are represented by covers.

Definition 2.2 Let F , G, H, R be covers respectively of the functions f , g, h, r in Defn. 2.1.
If GH is restricted to be an algebraic product, G is an algebraic divisor of F . Otherwise, G

is a Boolean divisor of G.
If GH is restricted to be an algebraic product and R = ∅, G is an algebraic factor of F .

Otherwise, G is a Boolean factor of F .
If GH is restricted to be an algebraic product, H is the algebraic quotient, denoted F//G.

Otherwise, H is a (non-unique) Boolean quotient denoted F ÷G.
If H is an algebraic quotient, the operation (F,G) → (H,R) is called algebraic division,

denoted by //; otherwise it is called Boolean division, denoted by ÷.

We will reserve the notation F/G for the more useful “weak division” that is a type of algebraic
division defined later.

Example 2.1 Consider:

F = ad + ae + bcd + j

G1 = a + bc

G2 = a + b

Examples of algebraic division are:

1. F//(bc) = d;

2. F//a = d + e; also F//a = d or F//a = e, i.e., algebraic division is not unique;

3. H1 ≡ F//G1 = d,R1 = ae + j.

Examples of Boolean division are:

1. H2 ≡ F ÷G2 = (a + c)d, R2 = ae + j, i.e., F = (a + b)(a + c)d + ae + j;

2. G1 ÷G2 = a + c, i.e., G1 = (a + b)(a + c).
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2.1 Boolean Division for Completely Specified Functions

Lemma 2.1 A Boolean function g is a Boolean factor of a Boolean function f if and only if f ⊆ g
(i.e. fg = ∅, i.e. g ⊆ f).

Proof. ⇒: g is a Boolean factor of f . Then ∃h such that f = gh; Hence, f ⊆ g (as well as h).
⇐: Assume f ⊆ g; since f = fg + fg, then f = fg = g(f + r) where r is any function r ⊆ g.

Thus f = gh, where h = f + r. 2

Note that:

1. h = f works fine for the proof.

2. Given f and g, h is not unique. To get a small h is the same as getting a small f + r. Since
rg = ∅, this is the same as minimizing (simplifying) f with don’t care (DC) = g.

Example 2.2 Let f = (a+ b)(a+ c)+db, it holds that a+ b ⊆ f , then by Lemma 2.1 g = a+ b is a
factor of f , i.e. f = (a + b)h. It is f = fg + fg = fg = ((a + b)(a + c) + db)(a + b). To get a small
h we can minimize f and obtain f = (a + bc + db)(a + b). The minimization of f is performed by
representing f = (a + b)(a + c) + db = a + ab + ac + bc + db by the minimal SOP representation
f = a + bc + db.

Actually, according to the proof, h can be any function of the form f + r, where r is orthogonal
to g. Hence we can get a smaller h by minimizing f with DC = g = ab, that gives h = a+c+d and
so f = (a + c + d)(a + b), where g = a + b is the divisor and h = f + r = a + c + d is the quotient.
The minimization of f with DC = g = ab is performed by applying two-level logic minimization
to the incompletely specified function F whose onset is a + bc + db and whose don’t care set is ab,
yielding the optimal SOP representation h = a + c + d, where the minimization procedure used the
don’t care set ab by adding to the onset the terms in the don’t care set given by r = ab d+abc ⊆ ab.

Lemma 2.2 g is a Boolean divisor of f if and only if fg 6= ∅.

Proof.

⇒: f = gh + r, gh 6= ∅ ⇒ fg = gh + gr. Since gh 6= ∅, fg 6= ∅.

⇐: f = fg + fg = g(f + k) + fg. Here k ⊆ g. Then f = gh + r, with h = f + k, r = fg. Since
fg = hg + rg = hg and fg 6= ∅ then gh 6= ∅. This means that g is a Boolean divisor of f , in view
of Definition 2.1. 2

Note that the requirement fg 6= ∅ is the less restrictive one. Hence f has many Boolean divisors.
We are looking for a g such that f = gh+r, where g, h, r are simple functions. From f = fg+fg =
gh + r, given g and h, we could minimize fg with DC = (fg) = gh to get a small r, and instead
given g and r we could minimize hg = fg with DC = (fg) = r to get a small h (or also with
DC = r + g since (r + g)g = rg). The problem is how to minimize simultaneously all the unknown
terms to obtain a small f , i.e., a representation of f with fewer literals.

2.2 Boolean Division for Incompletely Specified Functions

The following results extend Boolean division to incompletely specified functions F = (f, d, r).
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Definition 2.3 A completely specified Boolean function g is a Boolean divisor of F = (f, d, r)
if there exist completely specified Boolean functions h, e such that

f ⊆ gh + e ⊆ f + d, i.e., f = gh + e mod d,

and
gh 6⊆ d, i.e., gh 6= 0 mod d.

g is a Boolean factor of F = (f, d, r) if there exists h such that

f ⊆ gh ⊆ f + d, i.e., f = gh mod d.

Lemma 2.3 f ⊆ g if and only if g is a Boolean factor of F = (f, d, r).

Proof.

⇒: Let h = f + k where kg ⊆ d. Then hg = (f + k)g = fg + kg ⊆ f + d.
Since f ⊆ g, f = fg and thus f ⊆ fg + kg = (f + k)g = gh. Thus

f ⊆ (f + k)g ⊆ f + d.

⇐: Suppose ∃ minterm m such that f(m) = 1 but g(m) = 0. Then f(m) = 1 but g(m)h(m) = 0
implying that f 6⊆ gh. 2

Note that we would like to find the simplest h; since h has the form f +k, where kg ⊆ d or k ⊆ d+g
(kg ⊆ d, kg + g ⊆ d + g, kg + kg ⊆ d + g, k ⊆ d + g), we can simplify hf + k by minimizing f with
DC = d + g. So the steps would be:

1. Choose g ⊇ f (with G cover of g).

2. Simplify (f, d + g, rg) to obtain H.

3. GH is a cover of F .

Lemma 2.4 fg 6= ∅ if and only if g is a Boolean divisor of F = (f, d, r).

Proof.

⇒: Assume fg 6= ∅.
Define Fh = (fg, d+fg, r). Now g ⊇ fg, so by Lemma 2.3 ∃h such that fg ⊆ gh ⊆ fg+d+fg =

f + d.
Let e be a cover of Fe = (fg, d + fg, r), i.e., fg ⊆ e ⊆ fg + d + fg = f + d.
Thus f = fg + fg ⊆ gh + e ⊆ f + d.
From fg ⊆ gh it follows fg ⊆ fgh and ∅ 6= fg ⊆ ghf → ghf 6= ∅. Since fd = ∅ by definition

and ghf 6= ∅ then gh 6⊆ d, verifying the conditions for Boolean division.

⇐: Suppose ∃h such that gh 6⊆ d and f ⊆ gh + e ⊆ f + d.
From gh + e ⊆ f + d it follows gh ⊆ f + d and, since gh 6⊆ d → gh 6= ∅, then ghf 6= ∅. Hence

fg 6= ∅. 2

In summary, the steps to find H and E would be:

1. Choose g such that fg 6= ∅ (with G cover of g).
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2. Simplify (fg, d + fg, r) to obtain H.

3. Simplify (fg, d + fg, r) to obtain E.

4. GH + E is a cover of F .

A correct variant of step 2. is:
2. Simplify (fg, d+g, r) to obtain H, because fg ⊆ h ⊆ fg+d+g implies fg ⊆ gh ⊆ fg+dg ⊆ f+d.
A correct variant of step 3. is:
3. Simplify (fg + fh, d + fgh, r) to obtain H, because fg + fh ⊆ e ⊆ fg + fh + d + fgh = f + d.

Since there are many divisors g (only need fg 6= ∅), the following questions are the unsolved

problem of common Boolean divisors:

1. Given (f, d, r), find a good g (fg 6= ∅) such that both (fg, d + fg, r) and (fg, d + fg + r)
simplify “nicely”.

2. Given two functions (or more) (f1, d1, r1) and (f2, d2, r2) find a common g “good and simple”
such that step 1. applies for both.

Lemma 2.5 Suppose g is an algebraic divisor of F , a cover of F = (f, d, r). If f 6⊆ e, where e is
the remainder in the algebraic division, i.e., F = gh + e, then g is a Boolean divisor of F .

Proof. Assume F = gh + e, gh 6= 0, f 6⊆ e. Since f ⊆ gh + e and f 6⊆ e, then fgh 6= ∅ implying
that fg 6= ∅. Therefore, by Lemma 2.4, g is a Boolean divisor of F . 2

Lemma 2.6 If g is an algebraic factor of F , a cover of F = (f, d, r), then g is a Boolean factor
of F .

Proof. Assume F = gh. Since f ⊆ F , then

f ⊆ gh⇒ f ⊆ g.

By Lemma 2.3, g is a Boolean factor of F . 2

Lemma 2.7 Suppose g is an algebraic divisor of F , a prime cover of F = (f, d, r). Then g′ is a
Boolean divisor of F̃ = (r, d, f).

Proof. We need to show that gr 6= ∅ by Lemma 2.4. Now F = gh + e, so F = e g + eh. But
d + r ⊇ F ⊇ r, thus Fr = r = e gr + ehr.

Suppose by contradiction that gr = ∅, then r = e hr, i.e., e h ⊃ r, and so e + h ⊆ r = f + d.
But, from F = gh + e ⊆ h + e ⊆ f + d, then e + h ⊆ f + d implies that the cubes of gh were

not prime, reaching a contradiction. 2

19



2.3 Performing Boolean Division

Given F = (f, d, r), and a divisor g, the problem is to find a cover for F in the form GH +E where
H,E are minimal in some sense, e.g., minimum factored form. A variant is to find a cover in the
form gH1 + gH0 + E, where again H1,H0, E are minimal.

There is a method for performing the Boolean division operation (i.e., finding H and E) based
on espresso, even though a minimum SOP may not be the best objective. Informally the steps of
the method are:

1. Create a new variable x to ”represent” g.

2. Form the don’t care set d̃ = xg + xg. (Since x = g we don’t care if x 6= g).

3. Minimize (f (d̃), d + d̃, r (d̃)) to get f̃ . Note that (f (d̃), d + d̃, r (d̃)) is a partition.

4. Return (H,E) where H are the terms of f̃ containing x but with x removed, and E is the
remainder of f̃ (i.e., the terms not containing x).

We can say that the method returns (H = f̃/x,E), where f/x denotes “weak division”, a maximal
form of algebraic division introduced formally in Defn. 3.1.

Example 2.3 Consider f with cover F = a+ bc and g with cover G = a+ b. The Boolean division
F ÷G can be performed as follows:

• d̃ = xab + x(a + b) where x = g = (a + b)

• Minimize (a + bc)(d̃) = (a + bc)(xab + x(a + b)) = xa + xbc with DC = xab + x(a + b).

• A minimum cover is a + bc but it does not use x or x!!

• Force x in the cover. It yields F = xa + xc and, making it a prime cover, finally we get
F = a + xc = a + (a + b)c.

Heuristic: Try to find an answer with x in it and which uses the least variables (or literals).

We provide two algorithms based on the previous method. Assume that F is a cover for
F = (f, d, r), D is a cover for d and g is a divisor. The first algorithm, shown in Fig. 6, finds H,E
such that xH + E is a cover for (f, d, r), where x is a literal denoting the divisor g.

The second algorithm, shown in Fig. 7, finds H1,H0, E such that xH1 + xH0 + E is a cover for
(f, d, r), where x is a literal denoting the divisor g and x is a literal denoting the divisor g. The
second algorithm is a slight variation of the first one: it uses x also while dividing, by skipping the
step F2 = remove x from F1.

The given algorithms use an operation MinLiteral Support (or MinVariable Support) that finds
a prime cover with the smallest literal (or variable) support, i.e., a prime cover with the smallest
number of literals (variables) that appear in at least a prime.

We remark that in any cover of primes of a completely specified function the minimum support
is always the same and is the set of variables on which the function effectively depends, i.e., the
essential variables of the function. However this is not true when there is a don’t care set d, and
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(H,E) ← Boolean Division(F,D, g)

D1 = D + xg + xg (don’t care)

F1 = FD1 (on-set)

R1 = (F1 + D1) = F 1D1 = F D1 (off-set)

F2 = remove x from F1.

F3 = MinLiteral Support(F2, R1, x)

(minimum literal support including x)

F4 = espresso(F3,D1, R1)

H = F4/x (quotient)

E = F4 − {xH} (remainder)

Figure 6: An algorithm for Boolean division. Given covers F of (f, d, r) and D of d and a divisor
g, it finds H,E such that xH + E is a cover of (f, d, r), where x is a literal denoting the divisor g.

(H1,H0, e) ← Boolean Division(F,D, g)

D1 = D + xg + xg (don’t care)

F1 = FD1 (on-set)

R1 = (F1 + D1) = F 1D1 = F D1 (off-set)

F3 = MinLiteral Support(F1, R1, x, x)

(minimum literal support including x, x)

F4 = espresso(F3,D1, r1)

H1 = F4/x

H0 = F4/x

E = F4 − {xH1} − {xH0}

Figure 7: An algorithm for Boolean division. Given covers F of (f, d, r) and D of d and a divisor
g, it finds H,E such that xH1 + xH0 + E is a cover of (f, d, r), where x is a literal denoting the
divisor g and x is a literal denoting the divisor g.
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so the result does not apply to our context, where d 6= ∅ by construction. Given a cover F of
F = (f, d, r), and the notations:

v sup(F ) = {v|v ∈ c or v ∈ c for some c ∈ F}

ℓ sup(F ) = {ℓ|ℓ ∈ c for some c ∈ F},

the following lemma states that the minimum support sets v sup and ℓ sup are unique for all prime
covers.

Lemma 2.8 For a completely specified Boolean function, i.e., for F = (f, d, r) with d = ∅, then
v sup(F1) = v sup(F2) and ℓ sup(F1) = ℓ sup(F2) for all prime covers F1, F2 of F .

Proof. Let F1 and F2 be two prime covers of F , with F1 independent of x, but let x be in F2.
Consider a prime cube xc ∈ F2, where c is a cube covering the minterms {m1,m2, . . . ,mk} (defined
over all variables except x). Since xmi is an implicant of F , it is covered by F1, because d = ∅ and
so all minterms in every implicant must be covered by any cover. However, F1 is independent of x,
and so xmi covered by F1 implies xmi covered by F1. Hence xmi is also an implicant of F . Hence
mi is an implicant of F , and this holds for all i = 1, . . . , k. Therefore c (that is the collection of all
mi, i = 1, . . . , k) is an implicant of F , and so xc can be raised to c, contradicting the fact that xc
is a prime. 2

The procedures to minimize the variable or literal support are based on the notion of blocking
matrices, used in two-level logic minimization to expand cubes to primes [2, 37]. We remind [2]
that the operation of expansion of an implicant is performed by removing one or more literals from
its expression as a cube, which corresponds to increasing its size by a factor of 2 per deleted literal,
and therefore to covering more minterms. It is legitimate to expand an implicant with respect to
a literal, if the expanded cube does not cover minterms of the offset. Expanding a cover means
expanding the single terms of the collection.

Given F = (f, d, r), let F = {c1, c2, . . . , ck} be a cover of F and R = {r1, r2, . . . , rm} be a cover
of r. A blocking matrix Bi of a cube ci of F keeps track of all variables that make cube ci disjoint
from each cube of R.

Definition 2.4 The blocking matrix Bi of cube ci of F is defined as

(Bi)qj =

{
1 if (ci)j ∩ (rq)j = ∅
0 otherwise

(1)

A row cover of a blocking matrix Bi of a cube ci of F is a set of variables that make cube ci disjoint
from each cube of R.

Definition 2.5 A row cover of B (a 0-1 matrix) is a set of column indices S = {j1, . . . , jv} such
that ∀q,∃j ∈ S such that Bqj = 1.

Theorem 2.1 Let S be a row cover of Bi and suppose |S| is minimum. Construct cube

(c̃i)j =

{
(ci)j if j ∈ S
{0, 1} = 2 otherwise

(2)

Then c̃i ⊇ ci is the largest prime implicant of F containing ci.
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1. Construct blocking matrix Bi for each ci

2. Form super-blocking matrix B

3. Find a minimum cover S of B, where S = {j1, j2, . . . , jv}

4. Build F̃ ← {c̃1, c̃2, . . . , c̃k}, where (c̃i)j =

{
(ci)j if j ∈ S
{0, 1} = 2 otherwise

Figure 8: Steps of the algorithm MinVariable Support to compute the minimum variable support.

Definition 2.6 The super-blocking matrix B of cover F = {c1, c2, . . . , ck} is defined as

B =




B1

B2

...
Bk




where Bi is the blocking matrix of cube ci of F .

Theorem 2.2 Let S be a minimum row cover of the super-blocking matrix B. The set {xj |j ∈ S}
is a minimum set of variables which appear in any cover of F obtained by expanding F .

Proof. Expand treats each ci ∈ F and builds Bi. Let ĉi be any prime containing ci. Then the
variables in ĉi “cover” Bi. Thus the union of the set of variables in ĉi taken over all i covers B.
Hence this set cannot be smaller than a minimum cover of B. 2

Note that in general, there could exist another cover of F which has fewer variables, but one not
obtained by expanding F .

In summary, given F = (f, d, r), F = {c1, c2, . . . , ck} cover of F , and R = {r1, r2, . . . , rm} cover
of r, the algorithm to find an expanded cover with the fewest variables is outlined in Fig. 8.

Given F = (f, d, r), F = {c1, c2, . . . , ck} cover of F , R = {r1, r2, . . . , rm} cover of r, the
minimum literal support is computed in a similar way, defining the literal blocking matrix as an
extension of the standard (variable) blocking matrix.

Definition 2.7 The literal blocking matrix B̂i of cube ci of F over Bn is defined as

(B̂i)qj =

{
1 if vj ∈ ci and vj ∈ rq

0 otherwise

(B̂i)q,j+n =

{
1 if vj ∈ ci and vj ∈ rq

0 otherwise

Example 2.4 Given ci = ade, rq = ace, the literal blocking matrix B̂i
q of ci is

a b c d e a b c d e

B̂i
q = 1 0 0 0 0 0 0 0 0 1
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Then construct the literal super-blocking matrix B̂ and get its row cover J .

Theorem 2.3 Let J be a minimum row cover of the super-blocking matrix B̂. The set {ℓi|i ∈
J} ∪ {ℓi|i + n ∈ J} is a minimum set of literals which appear in any cover of F obtained by
expanding F .

Proof. Same reasoning as for minimum variable support. 2

For a (non-trivial) cube, minimum literal support is the same as minimum variable support.

Example 2.5 Given the on-set cube ci = abd and off-set r = abd+abd+acd+ bcd+ cd, the literal
super-blocking matrix B̂i is

a b c d a b c d

abd 1 0 0 1 0 0 0 0

abd 0 0 0 1 0 1 0 0

acd 0 0 0 1 0 0 0 0
bcd 0 0 0 0 0 1 0 0

cd 0 0 0 1 0 0 0 0

The minimum column cover is {d, b} and thus bd is the maximum prime covering the cube abd.

To see the different operations in action, the following example shows how to perform Boolean
division by applying the steps of the algorithm in Fig. 6.

Example 2.6 Given F = a + bc, by algebraic division we get F/(a + b) = ∅. By Lemma 2.1 and
Lemma 2.2, G = a + b is a Boolean factor and a Boolean divisor of the function represented by F .
Moreover, it is easy to verify the Boolean division F ÷ (a + b) = a + c. Instead let us perform the
Boolean division according to the algorithm in Fig. 6.

• Set x = a + b.

• Generate the don’t care set D1 = x(a + b) + abx.

• Generate the care on-set F1 = FD1 = (a + bc)(ax + bx + abx) = ax + bcx. Let C = {c1 =
ax, c2 = bcx}.

• Generate the care off-set R1 = F D1 = (ab+ac)(ax+ bx+abx) = abcx+abx. Let R = {r1 =
abcx, r2 = abx}.

• Form the variable super-blocking matrix using column order (a, b, c, x). Notice that c1 and c2

are positive unate cubes.

B =

[
B1

B2

]
=




a b c x
1 0 0 0 ax
1 0 0 1
− − − −
0 0 1 0 bcx
0 1 0 1




(3)
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(Q,R) = Boolean Division(F,G)

m

(Q1, R1) = Algebraic Division(F,G)

D1 = (x⊕G) + Q1x

R2 = espresso(R1,D1)

(Q3, R3) = Algebraic Division(R2, x)

(Q,R) = (Q3 + Q1, R3)

Figure 9: An heuristic scheme for Boolean division that computes (Q,R) = Boolean Division(F,G).

• Find the minimum row cover S = {a, c, x}.

• Eliminate in F1 all variables associated with b. So from F1 = ax+ bcx we get F3 = ax+ cx =
x(a + c) (if we would notice F3 = x(a + c), then we could conclude F ÷ (a + b) = a + c and
we would be done).

• Simplifying F3 (applying expand, irredundant cover), we get F4 = a + cx.

• Thus the quotient is H = F1/x = c, the remainder is E = a and so we get the cover
xH + E = xc + a.

• In summary, from F = a + bc we got a + cx = a + c(a + b).

A question is: how to force x in the final cover ? espresso by default does not guarantee that it
will keep it, one must restrict/modify its operation to preserve x in the final cover, for instance one
could put MINVAR in the inner loop of espresso.

Another heuristic for Boolean division mentioned in [4, 5] interplays algebraic division and
simplification as shown in the scheme of Fig. 9. For simplicity here we omitted the minimum literal
support step. How to perform algebraic division is the topic of the next section.

Example 2.7 Performing Boolean division by two steps of algebraic division (with some help from
espresso too !).

F = abcd + abef + cdab + cdef + efab + efcd

G = ab + cd + ef

(Q1, R1) = Algebraic Division(F,G)

(Q1, R1) = (∅, F )

D = (ab + cd + ef)⊕ x

R2 = espresso(F,D)

R2 = abx + cdx + efx

(Q3, R3) = Algebraic Division(R2, x)

(Q3, R3) = (ab + cd + ef, ∅)

F = (ab + cd + ef)(ab + cd + ef)

25



3 Algebraic Division

The key motivations to introduce algebraic methods are:

1. They treat logic functions like a polynomial (often the irredundant prime representation is
canonical, e.g., unate).

2. Fast methods for manipulation of polynomials are available (complexity from linear to quadratic).

3. There is a loss of optimality, but results are still quite good.

4. They can iterate and interleave with Boolean operations.

When introducing algebraic division, we noticed already that it does not guarantee the unique-
ness of quotient and reminder.

Example 3.1 Given F = (a + b + c)(d + e) + ac and G = d + e, we can get either

F = (d + e)(a + b) + c(a + d + e) = GH1 + R1, or

F = (d + e)(a + b + c) + ca = GH2 + R2

so H and R are not unique.

To achieve uniqueness we introduce weak division, a restricted definition of algebraic division, where
the quotient is the largest (maximum number of terms) expression H such that F = GH + R.

Definition 3.1 Given two algebraic expressions F and G, a division is called weak division if

1. it is an algebraic division, i.e., it generates expressions H and R such that HG is an algebraic
product;

2. R has as few cubes as possible, or equivalently, H has as many cubes as possible;

3. HG + R and F are the same expression (having the same set of cubes when multiplied out).

The quotient H resulting from weak division is denoted by F/G.

Theorem 3.1 Given the algebraic expressions F and G, the quotient H and the remainder R
generated by weak division are unique.

Example 3.2 Given F = ac+ad+ae+bc+bd+be+ab, we have F/a = c+d+e, F/b = c+d+e+a
and F/(a+ b) = c+d+ e. Notice that F/(a+ b) = F/a∩F/b. Notice that F/(a+ b) = (F/a)(F/b).

To compute the quotient of an algebraic division F/G, where F = {ck} and G = {ai}, we define
first the quotient when the divisor is a cube as

hi = F/ai = {bj |aibj = ck ∈ F}.

Example 3.3 Let F = abc + abc + abde + abg + bc, then F/(ab) = c + de + g.

The following theorem argues that the quotient can be obtained by intersecting the quotients with
respect to the single cubes of the divisor.
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WEAK DIVISION(F,G): {
U = {uj} - all cubes of F but where only literals in G have been kept
V = {vj} - all cubes of F but literals in G removed
/* note that ujvj is the j-th cube of F */
V i = { vj ∈ V : uj = Gi } /* one set for each cube of G */
H = ∩ V i /* those cubes found in all V i */
R = F −GH
return (H,R)

}

Figure 10: An algorithm to perform weak division.

Theorem 3.2 Given F = {ck} and G = {ai}, then

F/G = {dj |dj ∈ F/ai ∀ai ∈ G} =
⋂

i

(F/ai).

Proof. If dj ∈ F/ai,∀ai ∈ G, then

(F/G)G + R = (d1 + . . . + ds)(a1 + . . . + a|G|) + R

where R are the remaining terms {ch} = F \ {djai|j = 1, . . . , s, i = 1, . . . , |G|}.
We show by contradiction that {dj} is the largest quotient; suppose not, then ∃d 6∈ {dj}, and

d(a1+. . .+a|G|) ∈ {ck}. Then d ∈ F/ai,∀ai ∈ G, and therefore d ∈ F/G = {dj |dj ∈ F/ai ∀ai ∈ G},
which is a contradiction. 2

Th. 3.2 suggests an algorithm to perform weak division that is outlined in Fig. 10.

Example 3.4 Given F and G

F = ace + ade + bc + bd + be + ab + ab

G = ae + b

the algorithm for weak division in Fig. 10 computes the following expressions

U = ae + ae + b + b + b + b + ab

V = c + d + c + d + 1 + a + 1

V ae = c + d

V b = c + d + 1 + a

H = c + d = F/G

R = be + ab + ab

Finally F can be factored as follows

F = (ae + b)(c + d) + be + ab + ab
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The time complexity of WEAK DIVISION is O(|F ||G|).
McGeer and Brayton investigated in [31] efficient implementations of the algebraic division

algorithm and they were able to show that its complexity can be reduced to O((|F |+ |G|) log(|F |+
|G|)). Moreover if F,G are already given as sorted cubes, i.e., in the order of their binary encoding
(e.g., abde can be encoded by the binary number 0110110101), they reported a linear time algorithm
such that F/G and R are produced in sorted order. In fact, the operations of algebraic division,
multiplication, addition, subtraction, and equality test were proved to be all linear and stable.

Definition 3.2 A stable algorithm produces its output in sorted order if it receives its input in
sorted order.

If all algorithms are stable, then we can start with a Boolean network, do an initial sort on each
node, and then use only stable operations.

The steps of the O(n log n) algorithm are outlined here:

1. Encode the cubes ai ∈ G as binary numbers n1, n2, . . . , n|G|.

2. Encode the cubes ci ∈ F restricted to the support of G, ci|sup(G) ≡ bi, as binary numbers
m1,m2, . . . ,m|F |.

3. Sort the cubes in the set {n1, . . . , n|G|,m1, . . . ,m|F |}, in time O((|F |+ |G|) log(|F |+ |G|)).

4. Define the set I = {i | ∃j mi = nj}, denoting the cubes of F divided by a cube of G.

5. Encode the set {di ≡ ci|sup(F )\sup(G) | i ∈ I}, as binary numbers q1, q2, . . . , q|I|.

6. Sort the cubes in the set {q1, . . . , q|I|}, in time O(|F | log |F |).

7. Define the set J = {j | qj appears |G| times}.

8. F/G = {cj|sup(F )\sup(G) | j ∈ J}.

Example 3.5 Consider F = acd + acd+ ae+ bcd + bcd+ be+ ag + be and G = a+ b. The encoded
cubes of F are (to ease readability, we report the binary encoding used in the algorithm with the
common decoding convention 01→ 1, 10→ 0, 11→ 2):

ab cdeg

(1) 12 1022

(2) 12 0122

(3) 12 2212

(4) 21 1022

(5) 21 0122

(6) 21 2212

(7) 12 2221

(8) 20 2212
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Notice that sup(G) = {a, b}, sup(F ) \ sup(G) = {c, d, e, g}. Then it is I = {1, 2, 3, 4, 5, 6, 7} and
the sorted {qi} are:

cdeg

(1-4) 1022

(2-5) 0122

(3-6) 2212

(7) 2221

Thus J = {1-4,2-5,3-6} and F/G = cd + cd + e.

Algebraic division filters were divised to speed up algebraic division. The function fj is not an
algebraic divisor of fi if any of the following cases is true:

1. fj contains a literal not in fi.

2. fj has more terms than fi.

3. For any literal, its literal count in fj exceeds that in fi.

4. yi is in the transitive fanin of fj .

4 Algebraic Divisors and Kernels

So far, we learned how to divide a given expression F by another expression G. But how do we find
G? The problem is that there are too many Boolean divisors, so a practical strategy is to restrict
the exploration to algebraic divisors, i.e., we restrict the problem to: given a set of functions {Fi},
find common weak (algebraic) divisors.

4.1 Kernels and Kernel Intersections

Definition 4.1 An expression F is cube-free if no cube divides the expression evenly, i.e., if
there are no expression G and cube c such that F = Gc.

Examples are: ab ∨ c is cube-free; ab ∨ ac and abc are not cube-free. Notice that a cube-free
expression must have more than one cube.

Definition 4.2 The primary divisors of an expression F are the elements of the set of expres-
sions

D(F ) = {F/c | c is a cube }.

Definition 4.3 The kernels of an expression F are the elements of the set of expressions

K(F ) = {G | G ∈ D(F ) and G is cube-free }.

In other words, the kernels of an expression F are the cube-free primary divisors of F .

Definition 4.4 A cube c used to obtain the kernel K = F/c is called a co-kernel of K, and C(F )
is used to denote the set of co-kernels of F .
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Example 4.1 Given the following expression Q, the table below lists the kernels and co-kernels.

Q = adf + aef + bdf + bef + cdf + cef + g
= (a + b + c)(d + e)f + g

kernel co-kernel

a + b + c df, ef

d + e af, bf, cf

(a + b + c)(d + e) f

(a + b + c)(d + e)f + g 1

Brayton and McMullen established in [3] the fundamental Th. 4.1 that motivates the role of
kernels. It states that if two expressions F and G are such that K(F ) and K(G) have at most one
term in common, then F and G have no common algebraic divisors with more than one

term.

Lemma 4.1 Every divisor G of expression F is contained in a primary divisor, i.e., if G divides
F , then ∃P ∈ D(F ) such that G ⊆ P ∈ D(F ).

Proof. From [20]. Let c be a cube of F/G. Then G ⊆ F/(F/G) and F/(F/G) ⊆ F/c ∈ D(F ). 2

Example 4.2 Let F = ac+ad+bc+bd+ec+ed+cd. Consider the algebraic divisor G = a+b that
is not a primary divisor and let us build a primary divisor that contains G according to the lemma.
From F/G = c+d, take cube c ∈ F/G = c+d. Then G = a+ b ⊆ F/(F/G) ≡ F/(c+d) = a+ b+ e
and F/(F/G) = a + b + e ⊆ F/c = a + b + e + d ∈ D(F ). So given the algebraic divisor G = a + b
we found a primary divisor P = a + b + e + d such that G ⊆ P , i.e., all cubes in G are also cubes
in P .

Theorem 4.1 Expressions F and G have a common multiple-cube divisor if and only if ∃KF ∈ K(F ),
∃KG ∈ K(G) such that |KF ∩ KG| > 1, i.e., KF ∩KG is an expression with at least two terms (it
is a not a single cube).

Proof. From [20].
If part: If there are a kernel KF ∈ K(F ) and a kernel KG ∈ K(G) whose algebraic intersection

D is an algebraic expression with at least two cubes, then D is by definition a common divisor of
F and G with at least two cubes.

Only if part: Let D be an algebraic divisor with at least two cubes. Then there is a cube-free
expression E that divides D (either D is cube-free or we make it cube-free by dividing it by the
largest cube divisor).

By lemma 4.1, ∃PF ∈ D(F ) and ∃PG ∈ D(G) such that E ⊆ PF ∈ D(F ) and E ⊆ PG ∈ D(G).
Since E is cube-free also PF and PG are cube-free. This means that PF and PG are cube-free

primary divisors, i.e., they are kernels of their respective functions: PF ∈ K(F ) and PG ∈ K(G).
From E ⊆ PF and E ⊆ PG, it follows E ⊆ PF ∩ PG and, since E is non-trivial (it has at least

two cubes), also PF ∩ PG is non-trivial. 2

In summary, if we compute the kernels of all functions and there are no non-trivial intersections,
then the only common algebraic divisors left are single cube divisors (these are not the only common
divisors of F and G, because there could be common Boolean divisors).
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Example 4.3 F = a(bc + bd) + e, G = a(bc + be) + d;
K(F ) = {bc + bd, a(bc + bd) + e}, K(G) = {bc + be, a(bc + be) + d};
{KF ∩KG : KF ∈ K(F ), KG ∈ K(G), KF ∩KG 6= ∅} = {bc, abc} are cubes, so F and G have

no common non-trivial algebraic divisors.

F = abc + cd + e, G = ab + cd + e;
K(F ) = {ab + cd + e}, K(G) = {ab + cd + e};
{KF ∩ KG : KF ∈ K(F ), KG ∈ K(G), KF ∩ KG 6= ∅} = {ab + e} is a common non-trivial

algebraic divisor of F and G.

Some subsets of kernels of interest in computations are defined introducing the notion of level
of a kernel.

Definition 4.5

Kn(F ) =

{
{k ∈ K(F ) | K(k) = {k}} n = 0
{k ∈ K(F ) | ∀k1 6= k ∈ K(k)⇒ k1 ∈ Kn−1(F )} n > 0

If k ∈ K0(F ), then k is a level-0 kernel of F .
If k ∈ Kn(F ), but k 6∈ Kn−1(F ), then k is a level-n kernel of F .

Intuitively, a kernel of level 0 has no kernels except itself. Similarly, a kernel of level n has at least
one kernel of level n− 1 but no kernels (except itself) of level n or greater. Thus

K0(F ) ⊂ K1(F ) ⊂ K2(F ) ⊂ · · · ⊂ Kn(F ) ⊂ K(F ).

Example 4.4

F = (a + b(c + d))(e + g)

K1 = a + b(c + d) ∈ K1, 6∈ K0

K2 = c + d ∈ K0

F = a(bd + c(b + d)) + bcd

K0(F ) = {b + d, ad + cd, bc + ac}

K1(F ) = {bd + c(d + b)} ∪ K0(F )

K2(F ) = {a(bd + c(b + d)) + bcd} ∪ K1(F )

K(F ) = K2(F )

Fig. 11 shows the pseudo-code of KERNEL, an algorithm to compute all kernels, when invoked
as KERNEL(0, F ). Note that the literals appearing in F are denoted by ℓi, i = 1, . . . , n.

Note the following facts:

1. The test (lk ∈ c) is a major efficiency factor. It also guarantees that no co-kernel is tried
more than once.

2. This algorithm has stood up to all attempts to find faster ones.

3. Can be used to generate all co-kernels.
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KERNEL(j,G) {
R = ∅
if (G is cube-free) R = R ∪ {G}
for (i = j + 1, ..., n) {

if (ℓi appears only in one term) continue
c = largest cube dividing G/ℓi evenly
if (ℓk ∈ c, for some k ≤ i) continue
else {

R = R ∪ KERNEL(i,G/(ℓic))
}

}
return R

}

Figure 11: An algorithm to compute the kernels of F when invoked as KERNEL(0, F ).

4. A simple modification of the kerneling algorithm allows to generate only the kernels of a
certain level d. In case of level 0, one observes that if no kernels are found in the for loop
then the argument is a kernel of level 0.

Example 4.5 Fig. 12 shows a fragment of the kerneling computation tree for F = a((bc+ fg)(d+
e) + de(b + cf))) + beg. Kernels and co-kernels are listed below.

co-kernel kernel

a bcd + bce + bde + cdef + dfg + efg
ab cd + ce + de
abc d + e
abd c + e
abe c + d
ac bd + be + def
acd b + ef
ace b + df
ad bc + be + cef + fg
ade b + cf
adf ce + g
ae bc + bd + cdf + fg
aef cd + g
af cde + dg + eg
afg d + e
b acd + ace + ade + eg
be ac + ad + g
e abc + abd + acdf + afg + bg
eg af + b
g adf + aef + be
1 abcd + abce + abde + acdef + adfg + aefg + beg
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a b c

d + e c + d b + ef b + df b + cf ce + g cd + g d + e

(a) (a) ac + d + g

(a)

b c d e f c d e

c d e d e e f f g

c + e

abcd + abce + adfg + aefg + adbe + acdef + beg

Figure 12: Kerneling illustrated from Example 4.5.

Co-kernels abc and afg generate both the same kernel d + e.

In [32] interesting properties of kernels with respect to prime factorization of logical expressions
are investigated, where an expression is defined to be prime if it cannot be factored algebraically.
We state some results.

Theorem 4.2 (Unique factorization theorem for weak division) An expression F has a unique
prime factorization F = ΠiFi, where each Fi is a prime expression.

Theorem 4.3 If P is a kernel of F and is a prime expression, then P is a kernel of exactly one
of the prime factors of F .

Theorem 4.4 If K is a level-0 kernel of F , then K is a kernel of exactly one of the prime factors
of F .

4.2 Fast Extraction of Divisors

Too much time may be spent for extracting divisors based on kernels: indeed some functions (e.g.,
symmetric functions) have too many kernels and kernels need to be recomputed often (e.g., after
substitution). This motivates the restriction to a subset of divisors: 2-cube divisors, and 2-literal
cube divisors, introduced by Rajski et Vasudevamurthy [36, 42].

Example 4.6

The expression F = abd + abd + acd has the following 2-cube and 2-literal divisors:
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1. ab + ab, b + c, ab + ac (2-cube divisors);

2. ad (2-literal cube divisor).

An algorithm for finding such restricted divisors has been provided in [36]. The extraction of
2-cube divisors is a polynomial operation, because there are O(n2) 2-cube divisors in an algebraic
expression with n cubes. Additional attractive computational features of the extraction procedure
are:

1. Extraction of 2-cube divisors and 2-literal cube divisors is done concurrently.

2. Complement divisors are recognized concurrently.

3. The result can be expanded to multiple-cube divisors and single cube divisors of any size.

Example 4.7 Consider F = abd + abd + acd, the following complement divisors are recognized
concurrently:

1. k = ab + ab, k = ab + ab (both 2-cube divisors);

2. k = ab + ac, k = ac + ab (both 2-cube divisors);

3. k = ab + ac, k = ab + ac (both 2-cube divisors);

4. c = ab (2-literal cube), c = a + b (2-cube divisor).

The extraction procedure of 2-cube divisors has O(n2) complexity and, given F = {ci}, defines
a set D2(F ) = {d | d = make cube free(ci + cj),∀ci, cj ∈ F}, which takes all pairs of cubes in F
and makes them cube-free, by the operation make cube free that divides the terms of its argument
by the largest cube common to them.

Example 4.8 Given F = axe + ag + bcxe + bcg, then D2(F ) = {xe + g, a + bc, axe + bcg, ag +
bcxe, xe + g}, because make cube free(axe + ag) = xe + g, make cube free(axe + bcxe) = a + bc,
make cube free(axe+bcg) = axe+bcg, make cube free(ag+bcxe) = ag+bcxe, make cube free(bcxe+
bcg) = xe + g.

Note that the functions are made algebraic expressions before generating double-cube divisors; also,
not all 2-cube divisors are kernels.

Example 4.9 K(axe+ag+af) = {xe+g+f}, but D2(axe+ag+af) = {xe+g, g+f, xe+f, gf}.
K(abd + abd + acd) = {ab + ab + ac, b + c}, but D2(abd + abd + acd) = {ab + ab, b + c, ab +

ac, ad, ab + ab, bc, ac + ab, a + d}.

Some lemmas proved in [42] allow to establish what complements of elements in D2(F ) are also
2-cube divisors or 2-literal cube divisors to be added to D2(F ). Moreover, some lemmas established
in [36] show the relations between single cube divisors, double-cube divisors and their complements,
allowing the concurrent computation of all of them and their addition to D2(F ).

Given two algebraic expressions F and G, during decomposition we need to establish whether
F has a complement cube divisor in G, and F has a common-cube divisor in G. A result from [36]
states that given two algebraic expressions F and G, if certain structural relations are verified, then
F has neither a complement double-cube divisor nor has a complement single-cube divisor in G.
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A fundamental task during decomposition is to establish whether two or more expressions have
any common algebraic divisors other than single cubes. Th. 4.1 stated that there are multiple-cube
common divisors among different functions if and only if there are non-trivial intersections among
their kernels, and justified the focus on kernels as a subset of algebraic divisors. The following
theorem from [42] shows that the same argument holds also for 2-cube divisors, which are an even
smaller subset of algebraic divisors.

Theorem 4.5 Expressions F and G have a common multiple-cube divisor if and only if D2(F ) ∩
D2(G) 6= 0.

Proof. If part: If D2(F ) ∩D2(G) 6= 0 then ∃D ∈ D2(F ) ∩ D2(G) that is a double-cube divisor of
F and G. Then D is a multiple-cube divisor of F and G.

Only if part: Suppose C = c1 + c2 + . . . + cm is a multiple-cube divisor of F and of G. Take any
E = ci + cj , ci, cj ∈ C. If E is cube-free, then E ∈ D2(F ) ∩ D2(G). If E is not cube-free, then let

Ẽ = make cube free(ci + cj), given that Ẽ exists because F and G are algebraic expressions. Hence

Ẽ ∈ D2(F ) ∩ D2(G). 2

As a result of Th. 4.5, all multiple-cube divisor can be “discovered” from double-cube divisors.

Example 4.10 Suppose that C = ab + ac + d is a multiple divisor of F and G. If E = ac + d,
E is cube-free and E ∈ D2(F ) ∩ D2(G). If E = ab + ac, make cube free(E) = Ẽ = b + c and
Ẽ ∈ D2(F ) ∩ D2(G).

In summary, an algorithm for fast divisor extraction has the following steps:

1. Generate and store all 2-cube divisors and 2-literal cube divisors and recognize complement
divisors.

2. Find the best (by value) 2-cube divisor or 2-literal cube divisor at each stage and extract it.

3. Update the set of 2-cube divisors after extraction

4. Iteratively extract divisors until no more improvement.

Experimentally fast extraction of divisors is much faster and of comparable quality with respect to
general kernel extraction.

5 Optimization of Boolean Networks by Division

We discuss how algebraic and Boolean division are used in modern multi-level logic synthesis
systems like SIS to define restructuring operations on a Boolean network. These network operations
are: factoring, decomposition, substitution, extraction, elimination, which are variously combined
into sequences of optimization steps in synthesis tools.

5.1 Factoring and Decomposition

Factoring is the operation to convert a logical expression usually available in SOP form into a
factored form with a minimum number of literals. From the state-of-art of computational tools,
exact techniques are too expensive and so one resorts to heuristic algorithms.
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FACTOR(F ) {
if (F has no factor) return F
(e.g. if |F | = 1, or an OR of literals)
D = CHOOSE DIV ISOR(F )
(Q,R) = DIV IDE(F,D)
return FACTOR(Q)FACTOR(D) + FACTOR(R)

}

Figure 13: General structure of a factoring algorithm.

The abstract scheme of a factoring algorithm is shown in Fig. 13. By choosing a divisor and a
division operation one can design a specific factoring algorithm. It must be said that this scheme
is too simple-minded and that a better generic factoring algorithm (still uncommitted as type of
divisor and division) improving hastily chosen divisors is shown in Fig. 14.

The next two examples Ex. 5.1 and 5.2 motivate the design of the generic algorithm in Fig. 14.
The following notation with reference to the algorithm in Fig. 13 is used in Ex. 5.1 and 5.2: F is
the original function, D is the divisor, Q is the quotient, P is a partial factored form, O is the final
factored form by FACTOR. In the examples we assume algebraic operations only.

In the first example there is a problem due to the fact that the quotient is a single cube.

Example 5.1

F = abc + abd + ae + af + g
D = c + d
Q = ab
P = ab(c + d) + ae + af + g
O = ab(c + d) + a(e + f) + g

O is not optimal since not maximally factored. It can be further factored to

a(b(c + d) + e + f) + g.

This problem occurs when the quotient Q is a single cube, and some of the literals of Q also appear
in the remainder R.

A solution of the problem highlighted in Ex. 5.1 is the following:

1. If the quotient Q is not a single cube, then done.

2. If the quotient Q is a single cube, then pick a literal ℓ1 in the cube which occurs in the greatest
number of cubes of F .

3. Divide F by ℓ1 to obtain a new divisor D1. Now, F has a new partial factored form

(ℓ1)(D1) + (R1)

and literal ℓ1 does not appear in R1.

Note that the new divisor D1 contains the original D as a divisor because ℓ1 is a literal of Q. When
recursively factoring D1, D can be discovered again.

In the second example there is a problem due to the fact that the quotient is not cube-free.
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Example 5.2

F = ace + ade + bce + bde + cf + df
D = a + b
Q = ce + de
P = (ce + de)(a + b) + (c + d)f
O = e(c + d)(a + b) + (c + d)f

Again, O is not maximally factored because (c + d) is common to both products e(c + d)(a + b) and
(c + d)f . The final factored form should have been

(c + d)(e(a + b) + f).

A solution of the problem highlighted in Ex. 5.2 is the following:

1. Make Q cube-free to get Q1.

2. Obtain a new divisor D1 by dividing F by Q1.

3. If D1 is cube-free, the partial factored form is F = (Q1)(D1) + R1, and we can recursively
factor Q1, D1, and R1.

4. If D1 is not cube-free, let D1 = cD2 and D3 = Q1D2. We have the partial factoring F =
cD3 + R1 (i.e., just start with c as the divisor). Now recursively factor D3 and R1.

Various kinds of factoring are obtained by choosing different forms of DIV ISOR and DIV IDE,
as listed next.

• CHOOSE DIV ISOR can be any of the following:

– LITERAL - choose a literal, or the best literal.

– QUICK DIV ISOR - choose a level-0 kernel.

– BEST DIV ISOR - choose the best kernel.

• DIV IDE can be any of the following:

– Algebraic Division.

– Boolean Division.

Three specialized factoring algorithms to mention are:

• QUICK FACTOR, whose divisor is a level-0 kernel (produced by QUICK DIV ISOR) and
whose division is weak division.

• GOOD FACTOR, whose divisor is a level-0 kernel (produced by BEST KERNEL, which
looks at all kernels and picks a kernel k that, when substituted into the original form F ,
maximally reduces the total number of SOP literals of F and k), and whose division is weak
division.

• BOOLEAN FACTOR, whose divisor is the same as for GOOD FACTOR and whose divi-
sion is Boolean division.
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GFACTOR(F,DIV ISOR,DIV IDE) {
D = DIV ISOR(F )
if (D = ∅) return F
(Q,R) = DIV IDE(F,D)
if |Q| = 1 return LF (F,Q,DIV ISOR,DIV IDE)
Q = make cube free(Q)
(D,R) = DIV IDE(F,Q)
second divide to improve divisor
if (cube free(D)) {

Q = GFACTOR(Q,DIV ISOR,DIV IDE)
D = GFACTOR(D,DIV ISOR,DIV IDE)
R = GFACTOR(R,DIV ISOR,DIV IDE)
return (Q)(D) + R

} else {
C = common cube(D)
return LF (F,C,DIV ISOR,DIV IDE)

}
}

LF (F,C,DIV ISOR,DIV IDE) {
l = best literal(F,C) /* most common literal */
(Q,R) = DIV IDE(F, l)
C = common cube(Q) /* largest common cube */
Q = cube free(Q)
Q = GFACTOR(Q,DIV ISOR,DIV IDE)
R = GFACTOR(R,DIV ISOR,DIV IDE)
return lC(Q) + R

}

Figure 14: Improved general structure of a factoring algorithm.
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DECOMPOSE(N , fi) {
k = CHOOSE KERNEL(fi)
if (k = ∅) return
fm+ℓ = k /* create new node m + ℓ */
fi = (fi/k)ym+ℓ + (fi/k)ym+ℓ + r
/* N ′ is modified network */
N ′′ = DECOMPOSE(N ′, fi)
N = DECOMPOSE(N ′′, fm+ℓ)

}

Figure 15: General structure of a decomposition algorithm.

Example 5.3 Given the SOP form H = ac + ad + ae + ag + bc + bd + be + bf + ce + cf + df + dg,
we show the results of some factoring algorithms previously mentioned:

• LITERAL FACTOR: H = a(c + d + e + g) + b(c + d + e + f) + c(e + f) + d(f + g).

• QUICK FACTOR: H = g(a + d) + (a + b)(c + d + e) + c(e + f) + f(b + d).

• GOOD FACTOR: H = (c + d + e)(a + b) + f(b + c + d) + g(a + d) + ce.

An excellent discussion of factoring can be found in [24, 43].
Decomposition is similar to factoring, from which it differs because each divisor is added

as a new node in the network and the associated variable is substituted into the function being
decomposed. Fig. 15 shows the scheme of a decomposition algorithm, based on choosing kernels as
candidate factors. Similar to factoring, we can define

• QUICK DECOMP: pick a level 0 kernel.

• GOOD DECOMP: pick the best kernel.

In general factorization yields a tree network, because it uses factors only once, whereas decompo-
sition yields a generic Boolean network, because it uses factors more than once.

5.2 Substitution

Substitution (or Resubstitution) checks whether an existing function fi at node i in the network
is the divisor of another function fj or f j at node j. If fj is a divisor of fi, then fi is transformed
into

fi = qyj + r.

Similarly for f j . Division may be either algebraic or Boolean, the former being more common. In
practice, this is tried for each node pair of the network; if there are n nodes in the network, then
one tries about 2n2 divisions (substitution is tried for positive and negative phase). Fig. 16 shows
fj being substituted in node fi and Fig. 17 provides the operational scheme.
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fj

fi

yj

Figure 16: Illustration of substitution, where yj (computed by node fj) becomes a fanin of node
fi.

SUBSTITUTE(N , fi) {
for each node fj 6= fi {

(h, r) = DIV IDE(fi, fj)
if h 6= 0 {

fi = yih + r
fnew = h /* create new node fnew */

}
}

}

Figure 17: General structure of a substitution algorithm.

Example 5.4 Let us consider Boolean substitution of x into F .

x = ab + cd + e
F = abf + acd + cdf + ade + ef

D1 = x(ab + cd + e) + x(ab + cd + e)

F1 = xef + xacd + xade + xabf + xcdf

R1 = abfx + aefx + defx + a c e x+

b c e x + a d e x + b d e x + acdfx
J = {a, d, f, x} (minimum literal support)
F3 = xf + xad + xad + xaf + xdf
F4 = xf + xad
H1 = f + ad
F = x(f + xad) = (ab + cd + e)(f + ad)

For efficiency, we use filters to prevent trying a division. The cover G is not an algebraic divisor
of F if any of the following is true:

1. G contains a literal not in F .
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EXTRACT (N ) {
repeat {

for each node fi {
N = DECOMPOSE(N , fi)

}
for each node fi {
N = SUBSTITUTE(N , fi)

}
N = ELIMINATE(N ) /* eliminate nodes with small value */

} until (cost function does not improve)
}

Figure 18: General structure of an extraction algorithm.

2. G has more terms than F .

3. For any literal, its count in G exceeds that in F .

4. F is in the transitive fanin of G.

5.3 Extraction

Extraction identifies common subexpressions that become new nodes in the Boolean network.
Common subexpressions are multiple-cube common divisors obtained by computing the kernels of
the functions in the network. The best kernel intersection may be chosen as the new factor; the
cost function to evaluate the value of a kernel intersection may be the number of literals in the
factored form for the network. Since exhaustive kerneling may be expensive, a good compromise is
to look only for double cube divisors. So the steps of extraction are as follows (see also Fig. 18):

1. Find all kernels of all functions

2. Choose one with best “value”.

3. Create a new node with this as function.

4. Algebraically substitute the new node everywhere.

5. Repeat 1,2,3,4 until the best value is less or equal than a given threshold.

We can combine decomposition and substitution to provide an effective extraction algorithm.
Fig. 19 shows the extraction of a factor common out of three nodes, and the creation of a new node
realizing the function of the selected factor.

Example 5.5 An example of extraction follows.

F1 = ab(c(d + e) + f + g) + h

F2 = ai(c(d + e) + f + j) + k
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fifj

fk

fl

Figure 19: Illustration of extraction of node fk out of nodes fj, fi and fl.

kernel extraction: K0(F1) = K0(F2) = {d + e}

l = d + e

F1 = ab(cl + f + g) + h

F2 = ai(cl + f + j) + k

kernel extraction: K0(F1) = {cl + f + g}, K0(F2) = {cl + f + j}, K0(F1) ∩ K0(F2) = cl + f

m = cl + f

F1 = ab(m + g) + h

F2 = ai(m + j) + k

kernel extraction: no kernel intersections at this point.
cube extraction: {am}

n = am

F1 = b(n + ag) + h

F2 = i(n + aj) + k

6 Conclusions

In this chapter we covered the foundations of algebraic and Boolean division in multi-level logic
synthesis. Variants of division have been proposed in the literature, e.g., algebraic division where
the distributive law is augmented with annihilation (aa = 0) and idempotency (aa = a), used in the
system M32 [27], and an analogous proposal called coalgebraic division [25]; a form of constrained
Boolean division, called extended algebraic division used in the system GLSS [26, 12], but many
more could be listed. A way to perform Boolean division by redundancy addition and removal has
been presented in [13].

To keep the chapter short we did not delve into the theory of optimal and near-optimal factored
forms [43, 9, 10, 11].
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Moreover, we skipped altogether rectangle covering, which refers to an elegant and useful re-
duction of common-cube extraction and kernel intersection extraction to the problem of covering
a matrix with rectangles [6]. Rectangles in a matrix provide an alternate way of interpreting the
kernels of a logic function, e.g., given F = abd + acd + bcd, then its related cube-literal matrix

a b c d d

abd 1 1 0 0 1
acd 1 0 1 1 0
bcd 0 1 1 1 0

has the property that an arbitrary cube is a co-kernel of F if and only if it is the cube corresponding
to a prime rectangle with at least two rows of the cube-literal matrix of F . The co-rectangle of
the prime rectangle identifies the kernel. A prime rectangle is a rectangle of 1s not contained in
any other rectangle. In this case, the prime rectangle ({1, 2}, {1}) corresponds to co-kernel a and
kernel bd + cd, the prime rectangle ({1, 3}, {2}) corresponds to co-kernel b and kernel ad + cd, and
the prime rectangle ({2, 3}, {3, 4}) corresponds to co-kernel cd and kernel a + b (the trivial kernel
F is not accounted by this interpretation).

Finally, it must be mentioned that a major effort in multi-level logic synthesis has been devoted
to node simplification, by exploiting the don’t care set that expresses the restricted controllability
and observability of a node in the network. Node minimization uses global network information,
but the quality of the final result is affected by the starting point, obtained by preliminary network
restructuring based on algebraic and Boolean division. To do justice to this subject would take
another chapter [4, 1, 5].
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